
Implementation of Metalworking Mode

in Mixed Reality Modeling System Using ToolDevice

Ryan Arisandi, Mai Otsuki, Asako Kimura, Fumihisa Shibata, and Hideyuki Tamura

Ritsumeikan University, Shiga, Japan

(Tel: +81-77-566-1111, E-mail: arisandi@rm.is.ritsumei.ac.jp)

Abstract: ToolDevice is a set of interaction devices developed to help users in spatial work such as layout designing

and three-dimensional (3D) modeling. ToolDevice consists of three components: TweezersDevice, Knife/HammerDevice,

and BrushDevice, which use metaphors of real-life hand tools to help users recognize each device’s unique functions.

For TweezersDevice and Knife/HammerDevice, we have developed a mixed reality (MR) 3D modeling system that

imitates real-life woodworking. In the system, TweezersDevice is used to pick up and move, while Knife/HammerDevice

is used to cut and join virtual objects represented as wood materials. Unfortunately, the system lacks a common

function for manipulating the shape of virtual objects. In this paper, we propose a novel way for manipulating the shape

of virtual objects using ToolDevice. We also present the results of an informal user study conducted to verify the

intuitiveness of our proposed method. Finally, we discuss the problems users reported in the study and future work.

Keywords: Interaction Device, Shape Manipulation, Tool Metaphor

1. Introduction

Most three-dimensional (3D) modeling software is

not made for beginners. The user interface is often

complex and requires users to have knowledge of

mathematics. Studies have proposed new approaches

that make the 3D modeling process more user friendly

[1]. One approach is to use real-life parts connected to

the computer [2]. Another is to use body parts, such as

fingers, to manipulate virtual objects [3][4]. The most

common approach is to use devices made specifically

for the assumed operations [5][6]. However, these

devices are often abstract in form, confusing novice

users on how to use them.

We have developed ToolDevice, a tangible user

interface that uses metaphors of real-life hand tools

[7]-[9] (Fig. 1). ToolDevice is a set of interaction

devices that offers two key features:

It employs the familiar shapes and tactile sensations

of hand tools that are commonly used in everyday life.

It is based on the idea that different tools are used for

different purposes.

These features help novice users recognize the use

and functions of devices by just looking at them. In

addition, users can apply these devices for digital

operations in a similar manner to real-life operations.

Our focus is to help users who have difficulty in

performing spatial work, such as layout designing and

3D modeling, by using a traditional two-dimensional

(2D) display and mouse. For this reason, our devices are

used in an immersive 3D environment. For simplicity,

we generalized the operations of spatial work into three

types: picking up and moving, manipulating, and

painting. We developed one device for each type of

operation:

(1) TweezersDevice imitates the shape of a pair of

tweezers for picking up and moving virtual objects.

(2) Knife/HammerDevice is specially designed to

change the tip to that of a knife or a hammer, depending

on the need. The knife tip is designed for cutting virtual

objects, whereas the hammer tip is designed for joining

virtual objects. In either case, the user can hold the

device just like holding a real-life knife or hammer.

(3) BrushDevice that imitates the shape of a brush

and is designed for painting virtual objects.

For TweezersDevice and Knife/HammerDevice, we

have developed a mixed reality (MR) 3D modeling

system that imitates woodworking in real life [9]. In this

system, users can see virtual wood materials through a

head-mounted display (HMD), pick up and move them

using TweezersDevice, and cut objects using

KnifeDevice. By changing the knife tip to hammer tip

and swinging the device onto adjoining virtual objects,

users can join multiple objects into one. The operation

resembles hitting a nail with a hammer to join several

components. To keep the operation simple, we require

users to hit virtual objects only once to join them.

Unfortunately, our system lacks one fundamental

function, shape manipulation. Without this function,

users cannot create a complex-shaped object, such as

the letter S. Although users can cut bigger objects into

smaller pieces and rejoin them to create

complex-shaped objects, this operation is tedious and

time consuming.

Therefore, the goal of this research is to implement

an intuitive shape manipulation function into our

modeling system using ToolDevice. However, because

shapes are not manipulated using hand tools in real-life

woodworking, we expect our users to have difficulties

Fig. 1 ToolDevice: (a) TweezersDevice,

(b) Knife/HammerDevice, and (c) BrushDevice

in associating operations in the system with real-life

operations. We solve this problem by splitting our

modeling system into two modes: woodworking mode

and metalworking mode. We will explain this in more

detail in section 3 after reviewing related work in

section 2.

The rest of the paper is structured as follows. We

explain our algorithm for implementing the shape

manipulation function in section 4 and report the results

of an informal user study that we conducted to confirm

the intuitiveness of our proposed method in section 5.

Finally we discuss the future direction of this work in

section 6.

2. Related Work

Traditional 3D modeling software often requires

users to have previous knowledge of mathematics in

order to be able to manipulate the shape of virtual

objects. This makes it difficult for novice users to learn

how to use the software.

To solve this problem, a variety of approaches have

been suggested for manipulating the shape of virtual

objects. The challenge is to propose a method that is

intuitive, can be easily controlled, and is applicable in a

real-time environment.

Grossman et al. [10] developed TapeWidget, a high

degree-of-freedom (DOF) input device made of rubber

with a flexible spring steel core. Using the TapeWidget,

users can create and edit virtual objects by performing

gestures such as cracking, stubbing, and twisting.

Llamas et al. [11] proposed a method of manipulating

virtual objects using a pair of rigid handles with three

buttons each. The handles can be used simultaneously to

change the shape of virtual objects. McDonnell et al. [4]

developed Virtual Clay, a system that enables users to

manipulate the shape of virtual objects using a finger.

The finger is tracked by a haptic device called

PHANToM. Similarly, Sheng et al. [3] developed an

interface that enables users to directly manipulate the

shape of virtual objects using multiple fingers. The

fingers are tracked using a Vicon motion capture system,

and the virtual object is represented in the real world by

a deformable physical prop. The prop acts as a proxy to

the virtual object; by performing gestures on the prop,

users can select, move, rotate, and manipulate the shape

of virtual objects.

Although the works mentioned above are arguably

more intuitive than traditional 3D modeling software in

that they provide different ways for users to directly

manipulate virtual objects, they still use traditional 2D

displays. This limits the users’ view to a planar surface.

Consequently, operations often do not go as expected,

especially operations involving parts that users cannot

see.

Huang et al. [2] solved this problem by developing

Easigami, a tool that enables users to create and

manipulate virtual objects using a paper-folding

metaphor. Easigami has a set of flat polygons of

different shapes with embedded PCI microcontrollers

that are used to connect to a computer. Users can

connect the polygons with each other and fold them to

create a model. This model will then be recreated in the

computer. By using this technique, Easigami enables

users to have a full 360 view of the model in the real

world. However, the models’ shapes and sizes are

limited to those of the available polygons.

Choi et al. [12] developed a sketching system in an

immersive 3D environment. Users can create and

manipulate the shape of virtual objects using a

wand-shaped wireless 3D input device. The wand is

used as if the user were making a sketch in 3D space.

This system enables users to freely create and

manipulate 3D models without any restrictions.

However, the wand-like input device makes it difficult

for novice users with no previous experience to

understand how to operate the device, especially for

manipulating shapes.

Wesche et al. [5] developed FreeDrawer, an

immersive sketch-based 3D modeling system similar to

that in [12]. However, users must first open a tool

selection menu and change the drawing tool before

manipulating the shape of virtual objects. Furthermore,

the authors concede that their system is not suitable for

beginners.

As explained in the previous section, we have

developed an MR 3D modeling system that enables

users to cut and assemble virtual wood materials using

ToolDevice. Adopting an MR environment allows users

to not only view virtual objects without any restrictions

but also freely place the objects wherever they like.

Moreover, ToolDevice enables users to manipulate

virtual objects by performing gestures that closely

resemble real-life operations, such as picking up and

moving (TweezersDevice), cutting (KnifeDevice), and

joining (HammerDevice).

We realize that a shape manipulation function is

necessary. However, because shape manipulation using

hand tools is uncommon in woodworking, we assume

that users will have difficulty in associating any type of

operations in the system with real-life operations. To

solve this problem, we examined how to best implement

a shape manipulation function.

3. Design

3.1 Shape Manipulation Function

We examined what type of operations and tools are

typically used in real-life handcrafting. Aside from

woodworking, which was used as a metaphor in our

previous work, we focused on three types of

handcrafting that are most common: metalworking, clay

modeling, and stone masonry.

We found that shape manipulation is most commonly

done in metalworking and clay modeling. Metalworking

uses hand tools such as a hammer to bend or dent metal

materials. In contrast, in clay modeling, clays are

manipulated by pressing or extruding them using hands.

As we mentioned previously, our goal is to implement a

shape manipulation function using ToolDevice.

Therefore, we decided to adopt metalworking as a

metaphor and implement a shape manipulation function

Fig. 3 Reaction force: (a) Denting (b) Bending Fig. 2 Structure of modeling system

using HammerDevice. We assume that users can easily

understand the operations in the system because they

resemble real-life operations.

To avoid confusion with the already implemented

joining function, which also requires HammerDevice,

we split our modeling system into two modes:

woodworking mode, in which users can assemble

multiple virtual objects, and metalworking mode, in

which users can manipulate the shape of objects (Fig. 2).

Note that other functions such as moving and cutting are

also available in metalworking mode via

TweezersDevice and KnifeDevice, respectively.

3.2 Real-life Metalworking

We further examined what types of shape

manipulation operations are usually done in real-life

metalworking. We found that there are three common

operations: denting, bending, and twisting. Of these

three, we focused on denting and bending because both

these operations are done using a hammer.

We decided to implement both denting and bending

to give users more flexibility when manipulating the

shape of virtual objects. However, because both the

operations use HammerDevice, we must implement the

operations in such a way that users can easily

distinguish when a virtual object must be dented or bent.

3.3 Operations

When making a dent in metal materials, users first

determine the part that is to be dented and place it on a

platform. Users then hit the metal material with a

hammer until the desired dent is achieved.

When bending metal materials, users first fix the

material on a platform, with the part that is to be bent

extending beyond the platform. Users then hit the

protruding part with a hammer until the desired bend is

achieved. When users hit a material, no reaction force

occurs, and the material is bent (Fig. 3b).

For denting metal materials, users fix the material on

a platform, placing the part that is to be dented

anywhere on the platform, except on the edge. When

users hit a metal material, a reaction force occurs, and

the material is dented (Fig. 3a). In other words, the

presence of a reaction force determines whether a metal

material is dented or bent when hit by a hammer.

On the basis of this difference, we propose the

following method of operation:

When denting a virtual object, users can place the

object anywhere except on the edge of the real table

used in the system. Hitting the object with

HammerDevice will then create a depression on the

object.

When bending a virtual object, users must place the

object on the edge of the real table used in the system

with the part that is to be bent extending beyond the

table. By hitting the protruding part iteratively with

HammerDevice, users can bend the object as much as

they like.

We argue that when bending virtual objects, users

need to be able to distinguish the part that is to be bent

and that is to remain the same. For this reason, we

require users to place virtual objects on the edge of the

real table used in our system. In contrast, when making

a dent in virtual objects, users need to determine only

the part that they want to dent.

In addition, we assume that placing virtual objects on

some type of platform every time users want to make a

dent is bothersome and limits flexibility. Therefore, we

made it possible for users to make a dent in virtual

objects anywhere except on the edge of the real table.

3.4 Parameters

To realize our proposed method of operation, we

analyzed the parameters that are considered when users

dent and bend metal materials in real life. Each

parameter for each operation is explained in detail

below. However, these parameters are not used for

rigorous simulation of shape changes because that is not

our aim. These parameters are used to realize an

intuitive method of manipulating the shape of virtual

objects.

3.4.1 Denting

Three parameters are considered, as explained below.

(1) Hitting point: Naturally, when users want to make

dent in a metal material, they will first determine the

part of the material they want to dent. In most cases,

users will hit the center point of the chosen part.

(2) Hitting power: After the denting point has been

determined, the user will then proceed to hit the metal

material with a hammer until the desired dent is

achieved. The swinging speed of the hammer affects the

hitting power, which in turn affects the size and depth of

the dent. The harder the metal material is hit, the bigger

and deeper the dent will be.

(3) Hitting direction: Depending on how the user

wants the metal material to be dented, the material can

be hit from any direction. For example, the dent will

differ in shape depending on whether the user hits the

material perpendicularly or diagonally.

3.4.2 Bending

Two parameters are considered, as explained below.

Fig. 4 System configuration

(1) Object placement: When bending a metal material,

users will first determine how they want the material to

be bent. Users will then fix the material on a platform

with the part that is to be bent extending beyond the

platform.

(2) Hitting power: After the metal material has been

fixed on a platform, the user proceeds by hitting the

protruding part. However, unlike denting, in this case,

the hitting power affects only how far the material is

bent.

4. Implementation

4.1 System Configuration

The system configuration is shown in Fig. 4. The

specifications for the main PC are as follows: Microsoft

Windows XP OS, Intel Core i7 Ext 965 CPU, and 6144

MB of RAM. We also use a binocular see-through

HMD (Canon VH-2002) that enables users to perceive

depth. The HMD is connected to a video capture card

(ViewCast Osprey-440) that captures input videos from

the cameras built into the HMD. The NVIDIA GeForce

GTX 280 graphics processor is used for image

processing. The positions and orientations of the HMD

and ToolDevice are tracked using Polhemus LIBERTY,

a six-DOF tracking system that uses magnetic sensors.

A transmitter is also used as a reference point for the

sensors. We use two devices from ToolDevice,

TweezersDevice, and Knife/HammerDevice. The

devices are connected to the main PC through an

input/output (I/O) box. The I/O box retrieves

information from the devices and sends it to the main

PC, which then sends back commands to control the

devices.

All the code in the system is written in C++/CLI

in .NET Framework. We used OpenGL and the OpenGL

Utility Toolkit (GLUT) for the graphics API. In creating

the MR space, first we set the videos captured by the

Osprey-440 as the background, and then we created a

virtual viewing point in OpenGL by obtaining the

position and orientation of the HMD from Polhemus

LIBERTY. By doing this, we were able to make users

feel as if they are manipulating virtual objects in the real

world.

4.2 Shape Manipulation

4.2.1 Object Triangulation

Our previous modeling system uses three types of

data to represent a virtual object: vertices, edges, and

surfaces. For example, a simple cube is defined by 8

vertices, 12 edges, and 6 surfaces. The advantage of this

technique is that it requires low computational effort.

However, it cannot represent objects with complex

shapes, especially objects that contain many curves,

such as the letter S. Therefore, we need to divide the

surfaces of the virtual objects into smaller triangles.

Several methods can be used to divide surfaces into

smaller triangles, also called triangulation; the most

common are the ear-clipping method, the monotone

polygon method, and Delaunay triangulation. The

ear-clipping and monotone polygon methods use

existing vertices to divide surfaces. In contrast,

Delaunay triangulation allows users to determine

various conditions in advance, such as how small the

divisions of the surface should be, and add new vertices

and edges to meet the previously set conditions. For

better representations of complex-shaped objects, we

decided to divide the surfaces of virtual objects using

Delaunay triangulation.

To do this, we used a program called “Triangle”

developed by Jonathan Shewchuk from the University

of California [13]. Triangle allows users to easily set

conditions by inputting command lines. In addition, it

uses the same data structure as our system to represent

virtual objects. Triangle stores vertex data in “.node”

files, edge data in “.edge” files, undivided surface data

in “.poly” files, and divided surface data in “.ele” files.

However, Triangle is restricted to triangulating 2D

surfaces. Because our virtual objects are 3D, we need to

convert the surfaces of our virtual objects into 2D

surfaces and back to 3D surfaces several times. The

steps to do this are explained in detail below; we will

refer to this process as step 0.

(0a) 3D to 2D: For each surface, create multiple .poly

files to store the surface’s data. To convert the surfaces

into 2D surfaces, follow the below steps:

(0a-1) Calculate the normal vector for each surface.

(0a-2) From the X, Y, Z values of the normal vector,

determine the largest value, and write the two other

values to the corresponding .poly file. For example, if

the largest value is X, write only the Y and Z values.

(0a-3) Store the data for one 3D vertex from each

surface to be used as a reference point.

(0b) 2D to 3D: For each surface, read the data from

the .node files created in step (1-2) to store each

surface’s vertices. This step will be explained later. To

convert the surfaces into 3D surfaces,

(0b-1) Calculate the D value of each surface. D is a

variable in the plane equation

Ax + By + Cz + D = 0, (1)

where A, B, C are the X, Y, Z values of the surface

normal vector, and x, y, z are the X, Y, Z values of the

reference point stored in step (0a-3).

(0b-2) After the D value has been determined, use Eq.

(1) to convert the 2D vertices back to 3D by calculating

the missing x, y, or z value of each vertex.

Fig. 6 Example of a triangulated object

Fig. 5 Illustration of Triangulation: (a) Original

data, (b) New vertices added, (c) Vertices added to

adjoining surface(s), (d) Triangulated object

Triangulation itself requires several steps, as

explained below. Triangulation is illustrated in Fig. 5.

(1) Add new vertices using Triangle.

(1-1) Convert virtual object’s surfaces to 2D

using step (0a).

(1-2) Set how small the surfaces should be divided

and execute Triangle to divide the surfaces. The vertices

data for the newly divided surface is then stored in the

corresponding .node files.

(1-3) Convert the newly added vertices back to 3D

using step (0b).

The result of this step is shown in Fig. 5b.

(2) Add vertices that are located at the intersection of

surfaces to the adjoining surface. To achieve a more

natural appearance for the virtual objects, we made it

possible to add new vertices on the edge of a surface,

which means that the new vertices may be located at the

intersection of multiple surfaces. However, this creates a

new problem. Because triangulation is done for each

surface, new vertices located on the edge are deemed to

be located on one surface only. This will create holes

between the surfaces. To avoid this problem, we need to

add the vertices to the adjoining surfaces as well. To do

this, follow the below steps:

(2-1) First, check the location of each vertex.

(2-2) Next, if a vertex is located at an intersection,

add it to the adjoining surface(s).

The result of this step is shown in Fig. 5c.

(3) Divide the new surfaces using Triangle:

(3-1) Convert the virtual object’s surfaces to 2D

using step (0a).

(3-2) Divide the surfaces using Triangle: Unlike step

(1-2), this time the surfaces are divided using existing

vertices only. The newly divided surfaces’ data and

edges are then stored in the corresponding .ele and .edge

files, respectively.

(4) Replace old surfaces and edges with new ones:

(4-1) List new surfaces by loading the data from

the .ele files created in step (3-2).

(4-2) Delete the old surfaces and replace them with

the new surfaces.

(4-3) List the new edges by loading the data from

the .edge files created in step (3-2).

(4-4) Delete the old edges and replace them with the

new edges.

The result of this step is shown in Fig. 5d.

(5) Calculate the normal vector for each surfaces and

vertices.

An example of a divided virtual object is shown in

Fig. 6.

4.2.2 Calculation for Deformation

In our system, users manipulate the shape of virtual

objects by hitting them with HammerDevice. In addition,

we use the edge of a real table to help users distinguish

when they can dent or bend virtual objects. We display a

semi-transparent yellow plane along the edge of the

table as a marker, as shown in Fig. 7. When a virtual

object intersects the plane, it is implied that the object is

placed on the edge of a platform (in this case, a table),

and users can bend the virtual object by hitting the

protruding part. In contrast, to make a dent on a virtual

object, users must make sure that the virtual object does

not intersect the yellow plane before hitting it with

HammerDevice.

In realizing shape manipulation functions, we need to

consider all the parameters explained in section 2. Note

that our goal is not to simulate real-life shape

manipulation, but to propose an intuitive method for

manipulating the shape of virtual objects. Thus, we do

not implement a physics engine to simulate shape

changes. However, we still need to make the changes in

shape believable to some extent. The algorithms for

both denting and bending are explained below in detail.

(1) Denting

When a virtual object is not placed on the edge of the

table, users can make a dent in the object by swinging

HammerDevice onto it. In particular, when

HammerDevice is swung, the system determines

whether the head of HammerDevice collides with a

virtual object. If it collides, the system uses an

accelerometer embedded in HammerDevice to

determine whether it is swung with sufficient speed. If

the speed is high enough, the system will determine the

vertex that is closest to the head of HammerDevice. The

vertex is then set as the central point for making the

dent.

Because the system always keeps track of the

devices’ positions, we can determine the vector of the

swinging direction by subtracting the current position

from the position in the previous frame. This vector is

stored as dir . By dividing the length of this vector l

with the time lapse between the previous and current

frames t, we can determine the swinging speed v:

Fig. 7 Yellow plane marking edge of table

Fig. 8 TweezersDevice operation. (a) Pick (b) Move (c) Release

t

l
v  (2)

The swinging speed is then used to calculate the size

and depth of the dent. By multiplying the speed by the

coefficient , we determine the size of the dent:

vr  (3)

Here, r indicates the radius of the dent. All vertices

whose distance from the central point is less than r will

be moved. How far and to which direction the vertices

are moved is calculated using Eq. (4).

dir
r

d
disp 




























2
(sin1


 (4)

Here, disp is the vector of each vertex’s

displacement. Note that both r and dir are included in

the equation. The idea is that a vertex’s displacement is

largest when the vertex is the central point. The further a

vertex is from the central point, the smaller the

displacement will be. As for dir , the displacement of

the vertices is adjusted to the direction in which

HammerDevice is swung. Similar to operations in real

life, the shape of a dent differs depending on whether it

is hit perpendicularly or diagonally.

Finally, we calculate the new positions
tP for each

vertex by adding the current position of the vertex
0P

to the displacement vector disp :

dispPP  0t (5)

(2) Bending

When a virtual object is placed so that it intersects

the yellow plane, users can bend it by hitting the

protruding part with HammerDevice. To bend a virtual

object, we first calculate the intersection line between

the virtual object and the yellow plane. Next, using Eq.

(6), for each vertex, we determine the closest point

between the vertex and the intersection line and then

calculate the distance between them:

VCD  (6)

In this equation, D indicates the distance, C

indicates the closest point, and V indicates the position

of the vertex.

Using D , we can determine whether a vertex is

protruding from the table. To do this, we calculate the

dot product of D and the normal vector of the yellow

plane N . If the dot product is less than 0, we consider

the vertex to be protruding from the table:

0ND (7)

To create the impression of an object being bent, we

rotate the vertices that are considered to protrude around

the intersection line. How far a vertex is rotated is

determined by its distance from the intersection line and

the swinging speed of HammerDevice. We calculate the

rotation angle using Eq. (8):

vDangle 
2


 (8)

Here,  is the coefficient and v is the swinging speed.

4.3 Interaction

4.3.1 TweezersDevice

TweezersDevice can be used to pick up and move

virtual objects, just like using real-life tweezers. To help

users more easily recognize the relative positions of

TweezersDevice and virtual objects, the tip of

TweezersDevice is indicated by a white sphere. To pick

up a virtual object, users first have to make sure the

white sphere collides with a virtual object and then

pinch the object with TweezersDevice. By moving

TweezersDevice while pinching, users can move virtual

objects. The operations are shown in Fig. 8.

For operational feedback, when TweezersDevice

touches a virtual object, a sound effect is played and a

vibration motor is vibrated to alert the user. In addition,

the color of the virtual object changes to green. These

signals are provided to indicate that the virtual object

can be picked up. To indicate that a virtual object is

being moved, its color changes to blue.

Furthermore, when an object is selected, we utilize a

braking system that uses a solenoid to provide force

feedback to users. This gives users the feeling of

Fig. 9 HammerDevice operation: (a) Denting

(b) Bending

pinching a real object.

TweezersDevice can also be used to remove virtual

objects. We map a virtual trash bin onto a real trash bin

located on the table. By dropping virtual objects into the

trash bin using TweezersDevice, users can remove

unwanted objects. For operational feedback, when a

virtual object collides with the trash bin, its color

changes to red to indicate that the object can be

removed. We also play a thrashing sound effect when

the user releases the object to indicate that the object has

been removed.

4.3.2 Knife/HammerDevice

In this study, Knife/HammerDevice is used mainly to

manipulate the shape of virtual objects. Because shapes

are manipulated using the hammer tip, we will refer to

this device as HammerDevice.

(1) Denting

To make a dent on a virtual object, users first have to

place the object anywhere except on the edge of the

table. By hitting the virtual object with HammerDevice,

users can make a dent in it. The operation is shown in

Fig. 9a.

For operational feedback, when HammerDevice is

swung and collided with a virtual object, a vibration

motor is vibrated to indicate collision. In addition, we

also play the sound effects of a metal object being hit to

indicate that a virtual object has just been hit.

(2) Bending

To bend a virtual object, users first have to place the

object on the edge of the table with the part that is to be

bent extending beyond the edge of the table. By hitting

the protruding part with HammerDevice iteratively,

users can bend the object as much as they like. The

operation is shown in Fig. 9b.

For operational feedback, as in denting, a vibration

motor is vibrated when HammerDevice is swung and

collided with a virtual object. In addition, the sound

effect used in denting is also played to indicate that the

object was hit.

5. Informal User Study

5.1 Objective

We conducted an informal user study to verify the

intuitiveness of our proposed method. We also plan to

improve our system based on user comments.

5.2 Procedure

Using the system that we developed, we let the

participants manipulate the shape of virtual objects. Five

people participated in the study, three male and two

female students of Ritsumeikan University with an

average age of 23 years. All of the participants had no

experience whatsoever with any of our devices.

First, we gave a short demonstration on how to

manipulate the shape of virtual objects using our

devices. Next, we let the participants use our system.

We did not set any time limit, and the participants could

freely ask questions while using our system. After the

participants finished, we asked them what they thought

about our system and the proposed method of operation.

5.3 Results and Discussion

Examples of the results produced by the participants

are shown in Fig. 10.

Based on our observation, the participants were able

to understand how to operate our devices after seeing

the demonstration. When the participants held the

devices, they started to bend and dent virtual objects

without hesitation. However, on one or two occasions,

the participants failed to manipulate the shape of virtual

objects even after swinging HammerDevice. We assume

that because the participants were not yet familiar with

our devices, they did not swing HammerDevice with

sufficient speed, which prevented the operations from

being executed. We believe this problem does not need

to be addressed specifically because the participants

quickly learned that they need to swing the device with

more speed.

We received several positive and negative comments

from the participants. Many of the participants gave

positive feedback such as “The deformation is nice” or

“The virtual objects bent smoothly, just like real metal.

The objects can even be bent after being dented, and the

deformation is still as expected.” However, one

participant found it peculiar to manipulate the shape of

big and small virtual objects with the same force. We

assume this is because in real life, small objects tend to

be thought of as tough, and therefore hard to manipulate.

This is something we did not expect, and we will try to

look into this problem in more detail. As for other

comments regarding the appearance, one participant

commented that the texture resembles copper although

the color is different. We admit we did not concentrate

on the appearance of the objects. We will consider on

improving it for the future work.

Regarding the operations, all the participants said

that they are intuitive because they resemble operations

in real life. However, some of the participants

complained that it is hard to determine when to stop

swinging HammerDevice. Although there are vibration

and sound effects to indicate that a virtual object is hit,

force feedback is lacking. Therefore, the participants

have to guess when to stop, and this makes them

uncomfortable. To solve this problem, we need to

implement some type of force feedback mechanism. As

for other comments regarding the operation, one

participant said that he felt strange when making a dent

because the virtual object is floating. To solve this

problem, we thought of implementing gravity mode in

Fig. 10 User results

which virtual objects will stay on ground instead of

floating. We think this is an interesting idea and will

review it.

We received several negative comments on the

devices, mainly about HammerDevice being heavy. One

participant complained, “I do not understand the point

of making the device so heavy. While other devices are

relatively light, HammerDevice loses its merit when

being used for mixed reality systems.” In the previous

work, we intentionally made the tip of HammerDevice

heavier to give users a more lifelike feeling when

holding the device. Unexpectedly, it was not popular

among the participants.

Overall, the participants looked like they enjoyed

manipulating virtual objects with our devices. In

addition, from the comments received, we can say that

our proposed method of operation is easy to understand

because it resembles real-life operations. Furthermore,

none of the participants incorrectly dented or bent

virtual objects while trying to do otherwise. From these

results, we can conclude that our proposed method of

operation is intuitive.

6. Conclusion and Future Work

We proposed an interesting and intuitive way of

manipulating the shape of virtual objects using

ToolDevice, a set of interaction devices that imitates

real-life tools in order to help users recognize its

function. We introduced a metalworking metaphor to

our modeling system. First, we modified the structure of

virtual objects from our previous modeling system. Next,

we implemented a shape manipulation function with

two methods for changing the shape of virtual objects:

denting and bending. Imitating real-life operations, we

used the edge of a real table to differentiate these

operations. To make a dent in an object, users can place

the object anywhere but the edge of the table. Hitting

the object with HammerDevice will then create a

depression on the object. To bend an object, users first

have to place the object on the edge of the table, with

the part that is to be bent extending from the table. By

hitting the protruding part with HammerDevice

iteratively, users can bend the object as much as they

like.

We conducted an informal user study with five

participants to confirm the intuitiveness of our method.

All of them seemed to understand the operations after

seeing a simple demonstration, and none of them

incorrectly dented or bent virtual objects while trying to

do otherwise.

In future work, we plan to add haptic feedback to

HammerDevice, join both modes into a single system,

and conduct a formal user study to evaluate its

usefulness and intuitiveness.

REFERENCES

[1] D. Anderson et al.: “Tangible Interaction +

Graphical Interpretation: A New Approach to 3D

Modeling”, Proc. SIGGRAPH 2000, pp. 393 - 402,

2000

[2] Y. Huang et al.: “Easigami: virtual creation by

physical folding”, Proc. TEI 2012, pp. 41 - 48,

2012.

[3] J. Sheng et al.: “An interface for virtual 3D

sculpting via physical proxy”, Proc. GRAPHITE

2006, pp. 213 - 220, 2006.

[4] K. T. McDonnell et al.: “Virtual clay: a real-time

sculpting system with haptic toolkits”, Proc. SI3D

2001, pp. 179 - 190, March 2001.

[5] G. Wesche et al.: “FreeDrawer – A Free-Form

Sketching System on the Responsive Workbench”,

Proc. VRST 2001, pp. 167 - 174, 2001.

[6] S. Schkolne et al.: “Surface drawing: creating

organic 3D shapes with the hand and tangible tools”,

Proc. CHI 2001, pp. 261 - 268, 2001.

[7] A. Uesaka et al.: “TweezersDevice: A Device

Facilitating Pick and Move Manipulation in Spatial

Works”, Adjunct Proc. UIST 2008, pp. 55 - 56,

2008.

[8] M. Otsuki et al.: “MAI painting brush: an

interactive device that realizes the feeling of real

painting”, Proc. UIST 2010, pp. 97 - 100, 2010.

[9] Y. Takami et al.: “Daichi's artworking: enjoyable

painting and handcrafting with new ToolDevices”,

SIGGRAPH ASIA 2009, pp. 64 - 65, 2009.

[10] T. Grossman et al.: “An interface for creating and

manipulating curves using a high

degree-of-freedom curve input device”, Proc. CHI

2003, pp. 185 - 192, 2003.

[11] I. Llamas et al.: “Twister: a space-warp operator

for the two-handed editing of 3D shapes”, ACM

Trans. on Graphics 2003, pp. 663 - 668, 2003.

[12] H. Choi et al.: “Free hand stroke based virtual

sketching, deformation and sculpting of NURBS

surface”, Proc. ICAT 2005, pp. 3 - 9, 2005.

[13] J. R. Shewchuk. Triangle: Engineering a 2D

Quality Mesh Generator and Delaunay

Triangulator, Applied Computational Geometry:

Towards Geometric Engineering, volume 1148 of

Lecture Notes in Computer Science, pp. 203 - 222,

1996.

