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Abstract: ToolDevice is a set of interaction devices developed to help users in spatial work such as layout designing 

and three-dimensional (3D) modeling. ToolDevice consists of three components: TweezersDevice, Knife/HammerDevice, 

and BrushDevice, which use metaphors of real-life hand tools to help users recognize each device’s unique functions. 

For TweezersDevice and Knife/HammerDevice, we have developed a mixed reality (MR) 3D modeling system that 

imitates real-life woodworking. In the system, TweezersDevice is used to pick up and move, while Knife/HammerDevice 

is used to cut and join virtual objects represented as wood materials. Unfortunately, the system lacks a common 

function for manipulating the shape of virtual objects. In this paper, we propose a novel way for manipulating the shape 

of virtual objects using ToolDevice. We also present the results of an informal user study conducted to verify the 

intuitiveness of our proposed method. Finally, we discuss the problems users reported in the study and future work. 
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1. Introduction 

Most three-dimensional (3D) modeling software is 

not made for beginners. The user interface is often 

complex and requires users to have knowledge of 

mathematics. Studies have proposed new approaches 

that make the 3D modeling process more user friendly 

[1]. One approach is to use real-life parts connected to 

the computer [2]. Another is to use body parts, such as 

fingers, to manipulate virtual objects [3][4]. The most 

common approach is to use devices made specifically 

for the assumed operations [5][6]. However, these 

devices are often abstract in form, confusing novice 

users on how to use them. 

We have developed ToolDevice, a tangible user 

interface that uses metaphors of real-life hand tools 

[7]-[9] (Fig. 1). ToolDevice is a set of interaction 

devices that offers two key features: 

It employs the familiar shapes and tactile sensations 

of hand tools that are commonly used in everyday life. 

It is based on the idea that different tools are used for 

different purposes. 

These features help novice users recognize the use 

and functions of devices by just looking at them. In 

addition, users can apply these devices for digital 

operations in a similar manner to real-life operations. 

Our focus is to help users who have difficulty in 

performing spatial work, such as layout designing and 

3D modeling, by using a traditional two-dimensional 

(2D) display and mouse. For this reason, our devices are 

used in an immersive 3D environment. For simplicity, 

we generalized the operations of spatial work into three 

types: picking up and moving, manipulating, and 

painting. We developed one device for each type of 

operation: 

(1) TweezersDevice imitates the shape of a pair of 

tweezers for picking up and moving virtual objects. 

(2) Knife/HammerDevice is specially designed to 

change the tip to that of a knife or a hammer, depending 

on the need. The knife tip is designed for cutting virtual 

objects, whereas the hammer tip is designed for joining 

virtual objects. In either case, the user can hold the 

device just like holding a real-life knife or hammer. 

(3) BrushDevice that imitates the shape of a brush 

and is designed for painting virtual objects. 

For TweezersDevice and Knife/HammerDevice, we 

have developed a mixed reality (MR) 3D modeling 

system that imitates woodworking in real life [9]. In this 

system, users can see virtual wood materials through a 

head-mounted display (HMD), pick up and move them 

using TweezersDevice, and cut objects using 

KnifeDevice. By changing the knife tip to hammer tip 

and swinging the device onto adjoining virtual objects, 

users can join multiple objects into one. The operation 

resembles hitting a nail with a hammer to join several 

components. To keep the operation simple, we require 

users to hit virtual objects only once to join them. 

Unfortunately, our system lacks one fundamental 

function, shape manipulation. Without this function, 

users cannot create a complex-shaped object, such as 

the letter S. Although users can cut bigger objects into 

smaller pieces and rejoin them to create 

complex-shaped objects, this operation is tedious and 

time consuming. 

Therefore, the goal of this research is to implement 

an intuitive shape manipulation function into our 

modeling system using ToolDevice. However, because 

shapes are not manipulated using hand tools in real-life 

woodworking, we expect our users to have difficulties 

Fig. 1 ToolDevice: (a) TweezersDevice, 

(b) Knife/HammerDevice, and (c) BrushDevice 

 



in associating operations in the system with real-life 

operations. We solve this problem by splitting our 

modeling system into two modes: woodworking mode 

and metalworking mode. We will explain this in more 

detail in section 3 after reviewing related work in 

section 2. 

The rest of the paper is structured as follows. We 

explain our algorithm for implementing the shape 

manipulation function in section 4 and report the results 

of an informal user study that we conducted to confirm 

the intuitiveness of our proposed method in section 5. 

Finally we discuss the future direction of this work in 

section 6. 

2. Related Work 

Traditional 3D modeling software often requires 

users to have previous knowledge of mathematics in 

order to be able to manipulate the shape of virtual 

objects. This makes it difficult for novice users to learn 

how to use the software. 

To solve this problem, a variety of approaches have 

been suggested for manipulating the shape of virtual 

objects. The challenge is to propose a method that is 

intuitive, can be easily controlled, and is applicable in a 

real-time environment. 

Grossman et al. [10] developed TapeWidget, a high 

degree-of-freedom (DOF) input device made of rubber 

with a flexible spring steel core. Using the TapeWidget, 

users can create and edit virtual objects by performing 

gestures such as cracking, stubbing, and twisting. 

Llamas et al. [11] proposed a method of manipulating 

virtual objects using a pair of rigid handles with three 

buttons each. The handles can be used simultaneously to 

change the shape of virtual objects. McDonnell et al. [4] 

developed Virtual Clay, a system that enables users to 

manipulate the shape of virtual objects using a finger. 

The finger is tracked by a haptic device called 

PHANToM. Similarly, Sheng et al. [3] developed an 

interface that enables users to directly manipulate the 

shape of virtual objects using multiple fingers. The 

fingers are tracked using a Vicon motion capture system, 

and the virtual object is represented in the real world by 

a deformable physical prop. The prop acts as a proxy to 

the virtual object; by performing gestures on the prop, 

users can select, move, rotate, and manipulate the shape 

of virtual objects. 

Although the works mentioned above are arguably 

more intuitive than traditional 3D modeling software in 

that they provide different ways for users to directly 

manipulate virtual objects, they still use traditional 2D 

displays. This limits the users’ view to a planar surface. 

Consequently, operations often do not go as expected, 

especially operations involving parts that users cannot 

see. 

Huang et al. [2] solved this problem by developing 

Easigami, a tool that enables users to create and 

manipulate virtual objects using a paper-folding 

metaphor. Easigami has a set of flat polygons of 

different shapes with embedded PCI microcontrollers 

that are used to connect to a computer. Users can 

connect the polygons with each other and fold them to 

create a model. This model will then be recreated in the 

computer. By using this technique, Easigami enables 

users to have a full 360 view of the model in the real 

world. However, the models’ shapes and sizes are 

limited to those of the available polygons. 

Choi et al. [12] developed a sketching system in an 

immersive 3D environment. Users can create and 

manipulate the shape of virtual objects using a 

wand-shaped wireless 3D input device. The wand is 

used as if the user were making a sketch in 3D space. 

This system enables users to freely create and 

manipulate 3D models without any restrictions. 

However, the wand-like input device makes it difficult 

for novice users with no previous experience to 

understand how to operate the device, especially for 

manipulating shapes. 

Wesche et al. [5] developed FreeDrawer, an 

immersive sketch-based 3D modeling system similar to 

that in [12]. However, users must first open a tool 

selection menu and change the drawing tool before 

manipulating the shape of virtual objects. Furthermore, 

the authors concede that their system is not suitable for 

beginners. 

As explained in the previous section, we have 

developed an MR 3D modeling system that enables 

users to cut and assemble virtual wood materials using 

ToolDevice. Adopting an MR environment allows users 

to not only view virtual objects without any restrictions 

but also freely place the objects wherever they like. 

Moreover, ToolDevice enables users to manipulate 

virtual objects by performing gestures that closely 

resemble real-life operations, such as picking up and 

moving (TweezersDevice), cutting (KnifeDevice), and 

joining (HammerDevice). 

We realize that a shape manipulation function is 

necessary. However, because shape manipulation using 

hand tools is uncommon in woodworking, we assume 

that users will have difficulty in associating any type of 

operations in the system with real-life operations. To 

solve this problem, we examined how to best implement 

a shape manipulation function. 

3. Design 

3.1 Shape Manipulation Function 

We examined what type of operations and tools are 

typically used in real-life handcrafting. Aside from 

woodworking, which was used as a metaphor in our 

previous work, we focused on three types of 

handcrafting that are most common: metalworking, clay 

modeling, and stone masonry. 

We found that shape manipulation is most commonly 

done in metalworking and clay modeling. Metalworking 

uses hand tools such as a hammer to bend or dent metal 

materials. In contrast, in clay modeling, clays are 

manipulated by pressing or extruding them using hands. 

As we mentioned previously, our goal is to implement a 

shape manipulation function using ToolDevice. 

Therefore, we decided to adopt metalworking as a 

metaphor and implement a shape manipulation function 



Fig. 3 Reaction force: (a) Denting (b) Bending Fig. 2 Structure of modeling system 

using HammerDevice. We assume that users can easily 

understand the operations in the system because they 

resemble real-life operations. 

To avoid confusion with the already implemented 

joining function, which also requires HammerDevice, 

we split our modeling system into two modes: 

woodworking mode, in which users can assemble 

multiple virtual objects, and metalworking mode, in 

which users can manipulate the shape of objects (Fig. 2). 

Note that other functions such as moving and cutting are 

also available in metalworking mode via 

TweezersDevice and KnifeDevice, respectively. 

3.2 Real-life Metalworking 

We further examined what types of shape 

manipulation operations are usually done in real-life 

metalworking. We found that there are three common 

operations: denting, bending, and twisting. Of these 

three, we focused on denting and bending because both 

these operations are done using a hammer. 

We decided to implement both denting and bending 

to give users more flexibility when manipulating the 

shape of virtual objects. However, because both the 

operations use HammerDevice, we must implement the 

operations in such a way that users can easily 

distinguish when a virtual object must be dented or bent. 

3.3 Operations 

When making a dent in metal materials, users first 

determine the part that is to be dented and place it on a 

platform. Users then hit the metal material with a 

hammer until the desired dent is achieved. 

When bending metal materials, users first fix the 

material on a platform, with the part that is to be bent 

extending beyond the platform. Users then hit the 

protruding part with a hammer until the desired bend is 

achieved. When users hit a material, no reaction force 

occurs, and the material is bent (Fig. 3b). 

For denting metal materials, users fix the material on 

a platform, placing the part that is to be dented 

anywhere on the platform, except on the edge. When 

users hit a metal material, a reaction force occurs, and 

the material is dented (Fig. 3a). In other words, the 

presence of a reaction force determines whether a metal 

material is dented or bent when hit by a hammer. 

On the basis of this difference, we propose the 

following method of operation: 

When denting a virtual object, users can place the 

object anywhere except on the edge of the real table 

used in the system. Hitting the object with 

HammerDevice will then create a depression on the 

object. 

When bending a virtual object, users must place the 

object on the edge of the real table used in the system 

with the part that is to be bent extending beyond the 

table. By hitting the protruding part iteratively with 

HammerDevice, users can bend the object as much as 

they like. 

We argue that when bending virtual objects, users 

need to be able to distinguish the part that is to be bent 

and that is to remain the same. For this reason, we 

require users to place virtual objects on the edge of the 

real table used in our system. In contrast, when making 

a dent in virtual objects, users need to determine only 

the part that they want to dent. 

In addition, we assume that placing virtual objects on 

some type of platform every time users want to make a 

dent is bothersome and limits flexibility. Therefore, we 

made it possible for users to make a dent in virtual 

objects anywhere except on the edge of the real table. 

3.4 Parameters 

To realize our proposed method of operation, we 

analyzed the parameters that are considered when users 

dent and bend metal materials in real life. Each 

parameter for each operation is explained in detail 

below. However, these parameters are not used for 

rigorous simulation of shape changes because that is not 

our aim. These parameters are used to realize an 

intuitive method of manipulating the shape of virtual 

objects. 

3.4.1 Denting 

Three parameters are considered, as explained below. 

(1) Hitting point: Naturally, when users want to make 

dent in a metal material, they will first determine the 

part of the material they want to dent. In most cases, 

users will hit the center point of the chosen part. 

(2) Hitting power: After the denting point has been 

determined, the user will then proceed to hit the metal 

material with a hammer until the desired dent is 

achieved. The swinging speed of the hammer affects the 

hitting power, which in turn affects the size and depth of 

the dent. The harder the metal material is hit, the bigger 

and deeper the dent will be. 

(3) Hitting direction: Depending on how the user 

wants the metal material to be dented, the material can 

be hit from any direction. For example, the dent will 

differ in shape depending on whether the user hits the 

material perpendicularly or diagonally. 

3.4.2 Bending 

Two parameters are considered, as explained below. 



Fig. 4 System configuration 

(1) Object placement: When bending a metal material, 

users will first determine how they want the material to 

be bent. Users will then fix the material on a platform 

with the part that is to be bent extending beyond the 

platform. 

(2) Hitting power: After the metal material has been 

fixed on a platform, the user proceeds by hitting the 

protruding part. However, unlike denting, in this case, 

the hitting power affects only how far the material is 

bent. 

4. Implementation 

4.1 System Configuration 

The system configuration is shown in Fig. 4. The 

specifications for the main PC are as follows: Microsoft 

Windows XP OS, Intel Core i7 Ext 965 CPU, and 6144 

MB of RAM. We also use a binocular see-through 

HMD (Canon VH-2002) that enables users to perceive 

depth. The HMD is connected to a video capture card 

(ViewCast Osprey-440) that captures input videos from 

the cameras built into the HMD. The NVIDIA GeForce 

GTX 280 graphics processor is used for image 

processing. The positions and orientations of the HMD 

and ToolDevice are tracked using Polhemus LIBERTY, 

a six-DOF tracking system that uses magnetic sensors. 

A transmitter is also used as a reference point for the 

sensors. We use two devices from ToolDevice, 

TweezersDevice, and Knife/HammerDevice. The 

devices are connected to the main PC through an 

input/output (I/O) box. The I/O box retrieves 

information from the devices and sends it to the main 

PC, which then sends back commands to control the 

devices. 

All the code in the system is written in C++/CLI 

in .NET Framework. We used OpenGL and the OpenGL 

Utility Toolkit (GLUT) for the graphics API. In creating 

the MR space, first we set the videos captured by the 

Osprey-440 as the background, and then we created a 

virtual viewing point in OpenGL by obtaining the 

position and orientation of the HMD from Polhemus 

LIBERTY. By doing this, we were able to make users 

feel as if they are manipulating virtual objects in the real 

world. 

4.2 Shape Manipulation 

4.2.1 Object Triangulation 

Our previous modeling system uses three types of 

data to represent a virtual object: vertices, edges, and 

surfaces. For example, a simple cube is defined by 8 

vertices, 12 edges, and 6 surfaces. The advantage of this 

technique is that it requires low computational effort. 

However, it cannot represent objects with complex 

shapes, especially objects that contain many curves, 

such as the letter S. Therefore, we need to divide the 

surfaces of the virtual objects into smaller triangles. 

Several methods can be used to divide surfaces into 

smaller triangles, also called triangulation; the most 

common are the ear-clipping method, the monotone 

polygon method, and Delaunay triangulation. The 

ear-clipping and monotone polygon methods use 

existing vertices to divide surfaces. In contrast, 

Delaunay triangulation allows users to determine 

various conditions in advance, such as how small the 

divisions of the surface should be, and add new vertices 

and edges to meet the previously set conditions. For 

better representations of complex-shaped objects, we 

decided to divide the surfaces of virtual objects using 

Delaunay triangulation. 

To do this, we used a program called “Triangle” 

developed by Jonathan Shewchuk from the University 

of California [13]. Triangle allows users to easily set 

conditions by inputting command lines. In addition, it 

uses the same data structure as our system to represent 

virtual objects. Triangle stores vertex data in “.node” 

files, edge data in “.edge” files, undivided surface data 

in “.poly” files, and divided surface data in “.ele” files. 

However, Triangle is restricted to triangulating 2D 

surfaces. Because our virtual objects are 3D, we need to 

convert the surfaces of our virtual objects into 2D 

surfaces and back to 3D surfaces several times. The 

steps to do this are explained in detail below; we will 

refer to this process as step 0. 

(0a) 3D to 2D: For each surface, create multiple .poly 

files to store the surface’s data. To convert the surfaces 

into 2D surfaces, follow the below steps: 

(0a-1) Calculate the normal vector for each surface. 

(0a-2) From the X, Y, Z values of the normal vector, 

determine the largest value, and write the two other 

values to the corresponding .poly file. For example, if 

the largest value is X, write only the Y and Z values. 

(0a-3) Store the data for one 3D vertex from each 

surface to be used as a reference point. 

(0b) 2D to 3D: For each surface, read the data from 

the .node files created in step (1-2) to store each 

surface’s vertices. This step will be explained later. To 

convert the surfaces into 3D surfaces, 

(0b-1) Calculate the D value of each surface. D is a 

variable in the plane equation 

Ax + By + Cz + D = 0,  (1) 

where A, B, C are the X, Y, Z values of the surface 

normal vector, and x, y, z are the X, Y, Z values of the 

reference point stored in step (0a-3). 

(0b-2) After the D value has been determined, use Eq. 

(1) to convert the 2D vertices back to 3D by calculating 

the missing x, y, or z value of each vertex. 



Fig. 6 Example of a triangulated object 

Fig. 5 Illustration of Triangulation: (a) Original 

data, (b) New vertices added, (c) Vertices added to 

adjoining surface(s), (d) Triangulated object 

Triangulation itself requires several steps, as 

explained below. Triangulation is illustrated in Fig. 5. 

(1) Add new vertices using Triangle. 

(1-1) Convert virtual object’s surfaces to 2D 

using step (0a). 

(1-2) Set how small the surfaces should be divided 

and execute Triangle to divide the surfaces. The vertices 

data for the newly divided surface is then stored in the 

corresponding .node files. 

(1-3) Convert the newly added vertices back to 3D 

using step (0b). 

The result of this step is shown in Fig. 5b. 

(2) Add vertices that are located at the intersection of 

surfaces to the adjoining surface. To achieve a more 

natural appearance for the virtual objects, we made it 

possible to add new vertices on the edge of a surface, 

which means that the new vertices may be located at the 

intersection of multiple surfaces. However, this creates a 

new problem. Because triangulation is done for each 

surface, new vertices located on the edge are deemed to 

be located on one surface only. This will create holes 

between the surfaces. To avoid this problem, we need to 

add the vertices to the adjoining surfaces as well. To do 

this, follow the below steps: 

(2-1) First, check the location of each vertex. 

(2-2) Next, if a vertex is located at an intersection, 

add it to the adjoining surface(s). 

The result of this step is shown in Fig. 5c. 

(3) Divide the new surfaces using Triangle: 

(3-1) Convert the virtual object’s surfaces to 2D 

using step (0a). 

(3-2) Divide the surfaces using Triangle: Unlike step 

(1-2), this time the surfaces are divided using existing 

vertices only. The newly divided surfaces’ data and 

edges are then stored in the corresponding .ele and .edge 

files, respectively. 

(4) Replace old surfaces and edges with new ones: 

(4-1) List new surfaces by loading the data from 

the .ele files created in step (3-2). 

(4-2) Delete the old surfaces and replace them with 

the new surfaces. 

(4-3) List the new edges by loading the data from 

the .edge files created in step (3-2). 

(4-4) Delete the old edges and replace them with the 

new edges. 

The result of this step is shown in Fig. 5d. 

(5) Calculate the normal vector for each surfaces and 

vertices. 

An example of a divided virtual object is shown in 

Fig. 6. 

4.2.2 Calculation for Deformation 

In our system, users manipulate the shape of virtual 

objects by hitting them with HammerDevice. In addition, 

we use the edge of a real table to help users distinguish 

when they can dent or bend virtual objects. We display a 

semi-transparent yellow plane along the edge of the 

table as a marker, as shown in Fig. 7. When a virtual 

object intersects the plane, it is implied that the object is 

placed on the edge of a platform (in this case, a table), 

and users can bend the virtual object by hitting the 

protruding part. In contrast, to make a dent on a virtual 

object, users must make sure that the virtual object does 

not intersect the yellow plane before hitting it with 

HammerDevice. 

In realizing shape manipulation functions, we need to 

consider all the parameters explained in section 2. Note 

that our goal is not to simulate real-life shape 

manipulation, but to propose an intuitive method for 

manipulating the shape of virtual objects. Thus, we do 

not implement a physics engine to simulate shape 

changes. However, we still need to make the changes in 

shape believable to some extent. The algorithms for 

both denting and bending are explained below in detail. 

(1) Denting 

When a virtual object is not placed on the edge of the 

table, users can make a dent in the object by swinging 

HammerDevice onto it. In particular, when 

HammerDevice is swung, the system determines 

whether the head of HammerDevice collides with a 

virtual object. If it collides, the system uses an 

accelerometer embedded in HammerDevice to 

determine whether it is swung with sufficient speed. If 

the speed is high enough, the system will determine the 

vertex that is closest to the head of HammerDevice. The 

vertex is then set as the central point for making the 

dent. 

Because the system always keeps track of the 

devices’ positions, we can determine the vector of the 

swinging direction by subtracting the current position 

from the position in the previous frame. This vector is 

stored as dir . By dividing the length of this vector l 

with the time lapse between the previous and current 

frames t, we can determine the swinging speed v: 



Fig. 7 Yellow plane marking edge of table 

Fig. 8 TweezersDevice operation. (a) Pick (b) Move (c) Release 
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The swinging speed is then used to calculate the size 

and depth of the dent. By multiplying the speed by the 

coefficient , we determine the size of the dent: 

vr     (3) 

Here, r indicates the radius of the dent. All vertices 

whose distance from the central point is less than r will 

be moved. How far and to which direction the vertices 

are moved is calculated using Eq. (4). 
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Here, disp  is the vector of each vertex’s 

displacement. Note that both r and dir  are included in 

the equation. The idea is that a vertex’s displacement is 

largest when the vertex is the central point. The further a 

vertex is from the central point, the smaller the 

displacement will be. As for dir , the displacement of 

the vertices is adjusted to the direction in which 

HammerDevice is swung. Similar to operations in real 

life, the shape of a dent differs depending on whether it 

is hit perpendicularly or diagonally. 

Finally, we calculate the new positions 
tP  for each 

vertex by adding the current position of the vertex 
0P  

to the displacement vector disp : 

dispPP  0t    (5) 

(2) Bending 

When a virtual object is placed so that it intersects 

the yellow plane, users can bend it by hitting the 

protruding part with HammerDevice. To bend a virtual 

object, we first calculate the intersection line between 

the virtual object and the yellow plane. Next, using Eq. 

(6), for each vertex, we determine the closest point 

between the vertex and the intersection line and then 

calculate the distance between them: 

VCD     (6) 

In this equation, D  indicates the distance, C  

indicates the closest point, and V  indicates the position 

of the vertex. 

Using D , we can determine whether a vertex is 

protruding from the table. To do this, we calculate the 

dot product of D  and the normal vector of the yellow 

plane N . If the dot product is less than 0, we consider 

the vertex to be protruding from the table: 

0ND    (7) 

To create the impression of an object being bent, we 

rotate the vertices that are considered to protrude around 

the intersection line. How far a vertex is rotated is 

determined by its distance from the intersection line and 

the swinging speed of HammerDevice. We calculate the 

rotation angle using Eq. (8): 

vDangle 
2


   (8) 

Here,  is the coefficient and v is the swinging speed. 

4.3 Interaction 

4.3.1 TweezersDevice 

TweezersDevice can be used to pick up and move 

virtual objects, just like using real-life tweezers. To help 

users more easily recognize the relative positions of 

TweezersDevice and virtual objects, the tip of 

TweezersDevice is indicated by a white sphere. To pick 

up a virtual object, users first have to make sure the 

white sphere collides with a virtual object and then 

pinch the object with TweezersDevice. By moving 

TweezersDevice while pinching, users can move virtual 

objects. The operations are shown in Fig. 8. 

For operational feedback, when TweezersDevice 

touches a virtual object, a sound effect is played and a 

vibration motor is vibrated to alert the user. In addition, 

the color of the virtual object changes to green. These 

signals are provided to indicate that the virtual object 

can be picked up. To indicate that a virtual object is 

being moved, its color changes to blue. 

Furthermore, when an object is selected, we utilize a 

braking system that uses a solenoid to provide force 

feedback to users. This gives users the feeling of 



Fig. 9 HammerDevice operation: (a) Denting 

(b) Bending 

pinching a real object. 

TweezersDevice can also be used to remove virtual 

objects. We map a virtual trash bin onto a real trash bin 

located on the table. By dropping virtual objects into the 

trash bin using TweezersDevice, users can remove 

unwanted objects. For operational feedback, when a 

virtual object collides with the trash bin, its color 

changes to red to indicate that the object can be 

removed. We also play a thrashing sound effect when 

the user releases the object to indicate that the object has 

been removed. 

4.3.2 Knife/HammerDevice 

In this study, Knife/HammerDevice is used mainly to 

manipulate the shape of virtual objects. Because shapes 

are manipulated using the hammer tip, we will refer to 

this device as HammerDevice. 

(1) Denting 

To make a dent on a virtual object, users first have to 

place the object anywhere except on the edge of the 

table. By hitting the virtual object with HammerDevice, 

users can make a dent in it. The operation is shown in 

Fig. 9a. 

For operational feedback, when HammerDevice is 

swung and collided with a virtual object, a vibration 

motor is vibrated to indicate collision. In addition, we 

also play the sound effects of a metal object being hit to 

indicate that a virtual object has just been hit. 

(2) Bending 

To bend a virtual object, users first have to place the 

object on the edge of the table with the part that is to be 

bent extending beyond the edge of the table. By hitting 

the protruding part with HammerDevice iteratively, 

users can bend the object as much as they like. The 

operation is shown in Fig. 9b. 

For operational feedback, as in denting, a vibration 

motor is vibrated when HammerDevice is swung and 

collided with a virtual object. In addition, the sound 

effect used in denting is also played to indicate that the 

object was hit. 

5. Informal User Study 

5.1 Objective 

We conducted an informal user study to verify the 

intuitiveness of our proposed method. We also plan to 

improve our system based on user comments. 

5.2 Procedure 

Using the system that we developed, we let the 

participants manipulate the shape of virtual objects. Five 

people participated in the study, three male and two 

female students of Ritsumeikan University with an 

average age of 23 years. All of the participants had no 

experience whatsoever with any of our devices. 

First, we gave a short demonstration on how to 

manipulate the shape of virtual objects using our 

devices. Next, we let the participants use our system. 

We did not set any time limit, and the participants could 

freely ask questions while using our system. After the 

participants finished, we asked them what they thought 

about our system and the proposed method of operation. 

5.3 Results and Discussion 

Examples of the results produced by the participants 

are shown in Fig. 10. 

Based on our observation, the participants were able 

to understand how to operate our devices after seeing 

the demonstration. When the participants held the 

devices, they started to bend and dent virtual objects 

without hesitation. However, on one or two occasions, 

the participants failed to manipulate the shape of virtual 

objects even after swinging HammerDevice. We assume 

that because the participants were not yet familiar with 

our devices, they did not swing HammerDevice with 

sufficient speed, which prevented the operations from 

being executed. We believe this problem does not need 

to be addressed specifically because the participants 

quickly learned that they need to swing the device with 

more speed. 

We received several positive and negative comments 

from the participants. Many of the participants gave 

positive feedback such as “The deformation is nice” or 

“The virtual objects bent smoothly, just like real metal. 

The objects can even be bent after being dented, and the 

deformation is still as expected.” However, one 

participant found it peculiar to manipulate the shape of 

big and small virtual objects with the same force. We 

assume this is because in real life, small objects tend to 

be thought of as tough, and therefore hard to manipulate. 

This is something we did not expect, and we will try to 

look into this problem in more detail. As for other 

comments regarding the appearance, one participant 

commented that the texture resembles copper although 

the color is different. We admit we did not concentrate 

on the appearance of the objects. We will consider on 

improving it for the future work. 

Regarding the operations, all the participants said 

that they are intuitive because they resemble operations 

in real life. However, some of the participants 

complained that it is hard to determine when to stop 

swinging HammerDevice. Although there are vibration 

and sound effects to indicate that a virtual object is hit, 

force feedback is lacking. Therefore, the participants 

have to guess when to stop, and this makes them 

uncomfortable. To solve this problem, we need to 

implement some type of force feedback mechanism. As 

for other comments regarding the operation, one 

participant said that he felt strange when making a dent 

because the virtual object is floating. To solve this 

problem, we thought of implementing gravity mode in 
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which virtual objects will stay on ground instead of 

floating. We think this is an interesting idea and will 

review it. 

We received several negative comments on the 

devices, mainly about HammerDevice being heavy. One 

participant complained, “I do not understand the point 

of making the device so heavy. While other devices are 

relatively light, HammerDevice loses its merit when 

being used for mixed reality systems.” In the previous 

work, we intentionally made the tip of HammerDevice 

heavier to give users a more lifelike feeling when 

holding the device. Unexpectedly, it was not popular 

among the participants. 

Overall, the participants looked like they enjoyed 

manipulating virtual objects with our devices. In 

addition, from the comments received, we can say that 

our proposed method of operation is easy to understand 

because it resembles real-life operations. Furthermore, 

none of the participants incorrectly dented or bent 

virtual objects while trying to do otherwise. From these 

results, we can conclude that our proposed method of 

operation is intuitive. 

6. Conclusion and Future Work 

We proposed an interesting and intuitive way of 

manipulating the shape of virtual objects using 

ToolDevice, a set of interaction devices that imitates 

real-life tools in order to help users recognize its 

function. We introduced a metalworking metaphor to 

our modeling system. First, we modified the structure of 

virtual objects from our previous modeling system. Next, 

we implemented a shape manipulation function with 

two methods for changing the shape of virtual objects: 

denting and bending. Imitating real-life operations, we 

used the edge of a real table to differentiate these 

operations. To make a dent in an object, users can place 

the object anywhere but the edge of the table. Hitting 

the object with HammerDevice will then create a 

depression on the object. To bend an object, users first 

have to place the object on the edge of the table, with 

the part that is to be bent extending from the table. By 

hitting the protruding part with HammerDevice 

iteratively, users can bend the object as much as they 

like. 

We conducted an informal user study with five 

participants to confirm the intuitiveness of our method. 

All of them seemed to understand the operations after 

seeing a simple demonstration, and none of them 

incorrectly dented or bent virtual objects while trying to 

do otherwise. 

In future work, we plan to add haptic feedback to 

HammerDevice, join both modes into a single system, 

and conduct a formal user study to evaluate its 

usefulness and intuitiveness. 
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