直線運動と回転運動が共存する場合のベクション効果に 関する分析と考察

古賀宥摩^{†1} 石津航大^{†1} 橋口哲志^{†1} 柴田史久^{†1} 田村秀行^{†2} 木村朝子^{†1}

概要:視覚誘導性自己運動感覚は、知覚する運動方向の違いから直線運動感覚(Linear Vection; LV)と 回転運動感覚(Circular Vection; CV)の2つに分けられる.我々の先行研究で、LVとCVを同時に知 覚する場合、単なる強度和にならないことを確認しており、これは体験者に想定通りの知覚強度の提示 が難しいことを表している.そこで、本稿では、直線と回転の双方に着目し、LVとCVの関係について 分析した.その結果、直進速度が遅くなるほどCV強度が増加し、回転速度が遅くなるほどLV強度が 増加する傾向が見られ、CV強度とLV強度が概ね負の相関関係にあることを示した.

キーワード:視覚誘導性自己運動感覚,直線ベクション,回転ベクション,広視野ディスプレイ

1. はじめに

ー様に動く視覚刺激を観察することで、自分は静止して いるにも関わらず、あたかも運動しているように感じるこ とを視覚誘導性自己運動感覚(ベクション)と呼ぶ[1]. ベクションは視覚によって引き起こされる顕著な錯覚現象 であり、視覚刺激の運動方向とは反対方向に知覚すること が知られている。例えば、止まっている電車の中から、向 かい側の電車が動き出す様子を観察した際に、自分の乗っ ている電車が動き出したように感じる現象などが挙げられ る[2]. ベクションをより強く知覚する条件であるほど、 映像コンテンツの臨場感・没入感が高くなることが知られ ており、人工現実感(Virtual Reality; VR)におけるコン テンツへの応用が期待されている.

ベクションを観察する視覚刺激によって,直線的な運動 感覚だけでなく,回転しているような運動感覚を得ること もできる.これらは知覚される運動方向の違いから,直線 運動感覚 (Linear Vection; LV) と回転運動感覚 (Circular Vection; CV) の2つに分けられる [3].ベクション研究の ほとんどは LV, CV それぞれが独立に分析されてきたが, 現実世界では直線運動と回転運動が共存する場面もある. 例えば,ジェットコースターは楽しさや恐怖感を増幅させ るために,速い直線運動の最中に回転運動を加えている. この効果を活用すべく,VR コンテンツでも数多くのコン テンツが提案・開発されている [4][5].これらは,直進し ながら回転する視覚刺激であることから,LV と CV が同時 に起こることが考えられる.

これまで直線運動と回転運動が共存する視覚刺激は,1 つの運動感覚として分析されてきた[6].しかし,LV と CV では発現機序や脳活動も異なることが示唆されている

©2017 Information Processing Society of Japan

ことから [7], 我々は直線運動と回転運動が共存する視覚 刺激から LV と CV を別々に分析できるのでないかと考え た.そこで, 我々の研究グループでは, LV と CV の関係分 析の第1歩として, まず CV を評価対象とし, 広範な視野 領域に直線運動と回転運動が共存する視覚刺激を提示して, 直線運動の速度が上がると CV 強度が減少することを確認 した [8]. これは, LV と CV が単なる強度和にならないこ とを示している.

そこで本稿では LV と CV 双方に着目し, 2 つの感覚を 同時に評価する方法を提案すると共に, 直線運動と回転運 動の速度が互いに与える影響について検討する. 実験 1 で は,回転運動の速度が LV に, 直線運動の速度が CV にど の程度影響するかを確認する. 実験 2 では, 直線運動と回 転運動の速度の組み合わせによって, LV と CV の運動感覚 がどの程度の割合で知覚されているのか確認する. これら の実験を通して, LV と CV の関係について考察・分析する.

2. 関連研究

知覚するベクションの強さは、様々な要因によって増減 することが知られている.中でも、視覚刺激の運動速度に よる影響は大きい.例えば、回転方向の運動速度に着目し た検討として、Brandt ら [9] は視覚刺激の回転速度が上 がるほど、認識する回転速度と知覚する CV 強度が増加す ることを示している.また直線運動に対しても同様に、視 覚刺激の直線運動の速度が上がるほど、高い速度を認識し [10]、強い LV を知覚する [11].これらの研究より、視覚 刺激における運動速度は、視覚刺激の運動方向を問わずベ クション強度に影響を与えていることがわかる.しかし、 直線運動と回転運動が混合する場合、どのような傾向にな るかについては分析されていない.

Palmisanoら [6] は、前進方向の LV, Roll 軸回転の CV, そして、この2つの運動感覚が複合したベクションを扱っ ている.この研究では、認識する視覚刺激の運動速度は、 直線運動と回転運動をそれぞれ提示するよりも、両者が共

^{†1} 立命館大学大学院 情報理工学研究科 Graduate School of Information Science and Engineering, Ritsumeikan University

^{†2} 立命館大学 総合科学技術研究機構 Research Organization of Science and Technology, Ritsumeikan University

存する視覚刺激を提示した場合に高いことを示している. 一方で、知覚するベクション強度は、直線運動と回転運動 を同時に提示している場合に知覚するベクションではなく、 回転運動のみを提示した場合に感じる CV が最も強い傾向 であることを示している.これはより高い速度を認識して いるにも関わらず、ベクション強度が向上しないことを示 している.すなわち、直線運動と回転運動が複合したベク ションの知覚強度はそれぞれの運動速度に応じた LV と CV の単なる強度和にならないことを表している.これら のことから、LV と CV を同時に知覚するような視覚刺激を 提示した際、互いに影響し合うことが考えられる.

そこで我々は、直線運動と回転運動が共存する視覚刺激 を用いて、視覚刺激の直線運動の速度(直進速度)が CV に影響を与えることを確認した.具体的には、直進速度が 上がるほど CV 強度が減少し、下がるほど CV 強度が増加 する傾向が見られた [8].すなわち、直線運動の要素が CV に影響することが示され、LV と CV を同時に知覚する場 合、一方のベクション強度がもう一方のベクション強度に 影響を与えていることが考えられる結果であった.これは、 VR コンテンツを設計した際に、体験者に想定通りの運動 感覚の提示が難しいことを示唆している.

しかし, 我々の研究は CV 強度のみに着目したものであ り, 回転運動の要素が LV 強度に影響を与えることも考え られるが, その確認は行っていない.また, 回転の要素, 直線の要素がそれぞれの感覚にどの程度影響するか明らか にするまでには至っていない.そこで本論文では, LV と CV の双方から運動速度の影響について確認する.つまり, 回転速度が LV に, 直進速度が CV に与える影響について 確認し, LV と CV の関係について双方から考察・分析する.

3. 実験環境

3.1 広視野ディスプレイシステム

一般的に,人間の視野は水平方向180度以上とされ [12], ベクションを検討するにあたって,視野領域全域に視覚刺 激を提示することが重要である [13-15]. そこで,本研究 では,被験者の視野領域の全域に視覚刺激を提示すべく, 広視野ディスプレイシステムを構築した.広視野ディスプ レイシステムのスクリーンとして,直径 7.0m,高さ 3.8m の小型ドーム(ジャパンドームハウス株式会社 7000 型ド ームハウス)を採用した.また,3台のプロジェクタ(パ ナソニック株式会社 PT-DW6300LK)を小型ドームの壁面 の高さ 2.15m の位置に設置し,3台のプロジェクタがそれ ぞれ 120 度ずつ小型ドームの内壁面に映像を投影する.こ れにより,天井を含む被験者の周り 360 度への映像提示を 実現している.構築した広視野ディスプレイシステムのイ メージ図を図1に示す.また,ドーム状であるため,提示 面に不連続点がなく,一様な視覚刺激の提示が可能である.

ただし、我々が構築した広視野ディスプレイシステムで

プロジェクタの位置

は,前面投影方式を採用し,全天周に映像を提示している. そのため、プロジェクタから放射された光が被験者の目に 差し込むことにより、被験者が眩しく感じる可能性が考え られる.そこで、玉置ら [16] の手法に倣い、プロジェク タの座標系における被験者の頭部に黒色を投影することで 対処した.黒色を投影することで被験者の顔の部分に光が 放射されないため、被験者が実験中にプロジェクタの光を 眩しく感じることがなくなる.また、実験を行う際は、被 験者の影が映り込まないよう被験者の位置に配慮した.

3.2 視覚刺激

本実験には、多くのベクションに関する研究で使用され、 直線運動と回転運動の双方を認識できる視覚刺激として、 ランダムに配置された点群(ランダムドット)のフローを 使用する.ここで、ベクション強度は視覚刺激の運動速度 以外にも、奥行き情報の違いによって異なることが報告さ れている [17].そこで、知覚する奥行き情報を統一するた めに、十分に長い円筒形の CG オブジェクトの内側にラン ダムドットのテクスチャを投影し、VR 空間で移動させる ことで視覚刺激を表現した.円筒形の CG オブジェクトの 直径は、先行研究 [15] に倣って 6.0m とした.

ランダムドットのテクスチャは,黒色の一様背景に白色 の円形ドットで構成し,白色が占める密度が20%となるよ う設定した.このとき,ドットの大きさ(直径)は,被験 者の真横に配置されるドットが,視野角に換算して2.0度 となるように設定した.また,視覚刺激の消失点は,小型 ドームの床面から高さ1.6mの位置(被験者の目線の高さ) とし,同一箇所に視線方向を固定するために赤色の注視点 を設けた.生成した視覚刺激の例を図2に示す. この VR 空間内の被験者の観察位置における観察映像を 3 方向(水平方向に 120 度ずつ)の映像に分割し,それぞ れのプロジェクタから小型ドームの壁面に投影することで 体験者への全天周への視覚刺激提示を実現している.また, 円筒形の CG オブジェクトを平行移動させることで直線運 動,円筒を回転させることで回転運動の視覚刺激を表現す ることができる.本稿では,視覚刺激の直線の移動方向は 被験者に対して後退方向とし,回転方向は直線の移動方向 に対して時計回り(Roll回転)とした.すなわち,被験者 は前進の LV と反時計回りの CV を知覚する.

実験 1-a: 直線運動と回転運動の速度が LV に与える影響の確認

4.1 実験目的

我々の先行研究 [8] で, 直進速度が上がるほど CV を弱 く知覚することを示している.このことから, 直線運動と 回転運動が含まれる視覚刺激において, 直線運動の要素が LV だけでなく CV に影響を与え, また回転運動の要素が CV だけでなく LV に影響を与えていることが予想される. そこでまず, 本実験では直進速度が上がるほど LV 強度が 増加するのか, また, 回転速度が LV 強度に影響を与える のかを明らかにする.

4.2 実験方法

ベクション強度の評価方法として、ベクションを知覚す るまでの時間(潜時)、ベクションを知覚している間の時間 (継続時間)、数値による主観強度の回答の3つが主に用 いられている[18-20].一般的にベクションが強く知覚さ れた場合、潜時は短く、継続時間は長く、主観強度の数値 は大きくなることが知られている.そこで、本稿において も、この3つの指標で直線運動と回転運動が共存する視覚 刺激を観察した際に知覚するベクション強度を評価する.

潜時と継続時間の計測には、Wii Remote (任天堂製 RVL-003)を利用する.Wii Remote は、Bluetooth アダプ タ(ELECOM 製 LBT-UAN04C1BK)を用いて PCと接続 し、100Hz で安定してデータの送受信ができることを確認 した.主観強度においては、ベクションを全く知覚してい ない場合を0とし、非常に強いベクションを知覚した場合 を100とした101段階で回答させた.なお、LVと CVを 同時に知覚する場合に、直線成分と回転成分に分離して評 価できることは事前に確認しており、被験者には実験前に 十分な練習をさせ、実験方法について教示した.

ここで,直線運動と回転運動を同時に提示しても,LV と CV を同時に知覚する保証はない.つまり,CV を知覚 していない状態で,LV を評価する状況が発生する可能性 が懸念される.そこで,最初に回転運動のみを提示して, 被験者に CV を知覚させてから直線運動を加えて提示する. これにより,すべての提示パターンにおいて,CV を知覚 した状態でのLV を評価することができる.

図3 被験者の観察位置

表 1	実験	1-a	の提示ノ	ペタ	ーン
-----	----	-----	------	----	----

		直進速度 [m/s]			
	\searrow	4.0	8.0	16	
回転速度 [°/s]	0.0	L1_C0	L2_C0	$L4_C0$	
	4.0	L1_C1	L2_C1	L4_C1	
	8.0	$L1_C2$	$L2_C2$	$L4_C2$	
	16	L1_C4	L2_C4	L4_C4	

また, LV と CV の関係を分析するために, 直線運動を提示する前に知覚する CV の強さも把握しておく必要がある. そこで, 直線運動を提示する前に知覚する CV の潜時を計 測する. すなわち, 直線運動を提示する前の CV の潜時と, 直線運動と回転運動の両方を提示した際の LV の潜時, 継 続時間, 主観強度を用いて LV について分析する.

実験は、まず回転運動の視覚刺激のみを提示し、被験者 が CV を知覚したときに Wii Remote のボタンを押させる. この視覚刺激を提示してからボタンが押されるまでの時間 を CV の潜時とする.また、直線運動を加えた視覚刺激を 提示後、被験者が LV を知覚している間 Wii Remote のボ タンを押し続けさせた.ここで、直線運動を加えてからボ タンが押されるまでの時間を LV の潜時とし、視覚刺激の 提示終了までに押していた時間を継続時間とした.なお、 直線運動を加えた後の視覚刺激の提示時間は、先行研究 [20] に倣い 40 秒とした.つまり、ベクションを知覚しな かった場合、潜時が 40 秒、継続時間が 0 秒となる.

4.3 実験条件

視覚刺激の提示面に被験者自身の影が映り込むことを 避けるため,被験者の観察位置を図3に示すように設定し た.また,被験者の姿勢は直立姿勢とした.

使用する視覚刺激の直進速度は 4.0m/s, 8.0m/s, 16m/s の3段階とし、回転速度は 0.0°/s, 4.0°/s, 8.0°/s, 16°/s の4段階とした.このとき、直線運動と回転運動が共存す る際の LV 強度と、直線運動のみの LV 強度の比較も行う ため、0.0°/s を条件に加えている.視覚刺激の提示パター ンは、直進速度 3段階と回転速度 4段階の組み合わせとな る 3×4=12 通りである (表 1).また、提示パターン1つ につき3回ずつ実施する.よって,被験者1人あたりの試行回数は12×3=36試行である.

被験者は、成人13名(男性10名、女性3名)である.

4.4 実験手順

具体的な実験手順はそれぞれ以下の通りである.

- (1) 表1の提示パターンのうちランダムに1つを提示する
- (2) 回転運動する視覚刺激を提示する
- (3) CV を知覚したときにボタンを押させる
- (4) 視覚刺激に直線運動を加える
- (5) LV を知覚している間, ボタンを押させる
- (6) (4) から 40 秒後に画面を暗転し, 被験者に LV 強度を 101 段階(0~100)で回答させる
- (7) 疲労による影響を排除するために十分なインターバ ルを設ける
- (8) 画面を明転し,被験者に運動残効が発生していないことを確認させる

(9) 残りの提示パターンに対して(1)~(8)を繰り返す 回転速度 0.0°/sのパターンの場合,(2),(3)の手順をスキ ップして実験を行った.また,(7)とは別に、5試行毎に1 分以上の休憩を設けた.なお、実験は被験者の負担を考慮 し、提示パターン 12試行を3日に分けて行った.

4.5 実験結果

直線運動を提示する前の CV の潜時,提示後の LV の潜時・継続時間・主観強度の結果を図4に示す.なお,図中のエラーバーは標準誤差を表す. CV の潜時に対して,回転速度が上がるほど潜時が短くなっていることが図4(a)から読み取れる.さらに,一元配置の分散分析により,それぞれの回転速度の条件間で有意差が認められたため($F_{(2,12)} = 19.65, p < .001$),下位検定として Bonferroni 法による多重比較を行ったところ,8.0°/s と 16°/s の条件間は有意傾向に留まったが,その他の条件間に有意水準1%で有意差が認められた.これはすなわち,回転速度が上がるほど被験者は CV を強く知覚していること示している.

続いて、回転速度が継続時間・主観強度それぞれに対し て、直進速度(3)×回転速度(4)の二元配置の分散分析を 行った.結果として、LVの潜時・継続時間に交互作用の 有意差が認められたが(潜時: $F_{(6,12)} = 6.52$, p < .001,継 続時間: $F_{(6,12)} = 8.53$, p < 0.01),主観強度においては非有 意であった($F_{(6,12)} = 1.10$, p = 0.37).すなわち、回転速度 は LV に影響するが、その影響は直進速度ごとに変化する ということがわかった.ただし、主観強度には非有意であ ったことから、被験者が主観的に違いを体感できるほどの 大きな変化ではないことが考えられる.

また, 潜時と継続時間に対して単純主効果の検定を行った ところ, 2 つとも直進速度 4.0m/s においてのみ回転速度に 効果が見られた(潜時:F(3,12) = 19.46, p < .001, 継続時間: F(3,12) = 24.34, p < .001). このことより, 直進速度が小さい 場合に, 回転速度が LV 強度に与える影響がより大きくなる

(a) 直線運動を提示する前の CV の潜時

ことが示された. LV の主観強度においては, 直進速度の主 効果 (F_(2,12) = 98.48, p < .001) と回転速度の主効果 (F_(3,12) = 5.47, p = .0033) に有意差が認められたため, LV の主観強 度には, 回転速度と直進速度の両方がそれぞれ独立に影響す ると言える.また,具体的にどこに有意差があるのかを確認 するために,LVの潜時・継続時間の単純主効果が見られた 条件,そして主観強度の直進速度と回転速度それぞれに下位 検定として Bonferroni 法を用いて多重比較を行い,確認さ れた有意差を図中に記載した.ただし,本実験では主に回転 速度が LV に与える影響について確認するため,直進速度に おける多重比較の結果は割愛する.

以上をまとめると、直線運動提示前に知覚する CV は、 回転速度の大きい順に強く知覚している.また、直進速度 が大きく、回転速度が小さいほど潜時・継続時間・主観強 度より、LV が強くなる傾向が示されていることから、CV 強度が減少するにつれて LV 強度が増加することを示唆す る結果となった.このとき、直進速度が大きくなるほど、 LV 強度に与える回転速度の影響力が弱まることを示した.

実験 1-b: 直線運動と回転運動の速度が CV に与える影響の分析

5.1 実験目的

実験 1-a より, 直進速度が上がるほど LV 強度が増加す ることを確認した上で,回転速度が上がるほど LV 強度が 減少することを確認した.ここで,我々は直進速度が上が るほど CV 強度が増加することを示している [8].しかし, これは簡便な方法による確認に留まっており,LV と CV の 関係を分析するにあたり,LV の検討と同じ条件で直線運 動が CV に与える影響について検討する必要がある.

そこで、実験 1-a と同じ方法を用いて、回転速度が上が るほど CV 強度が増加するのか、また、直進速度が CV 強 度に対して影響を与えるのか明らかにする.これより、LV と CV を同時に知覚した際の CV 側の知見を得て、LV と CV の関係について分析する.

5.2 実験方法

実験 1-a と同様に,回転運動を提示する前の LV の潜時 と直線運動と回転運動の両方を提示した際の CV の潜時, 継続時間,主観強度を用いて CV について分析する.

5.3 実験条件

実験 1-a と同様, 直線運動と回転運動が共存する際の CV 強度と回転運動のみの CV 強度の比較も行うため, 0.0m/s を条件に加えた. すなわち, 視覚刺激の直進速度は 0.0m/s, 4.0m/s, 8.0m/s, 16m/s, 回転速度は 4.0°/s, 8.0°/s, 16°/s を 用いる. つまり, 視覚刺激の提示パターンは, 直進速度 4 段階と回転速度 3 段階の組み合わせとなる 4×3=12 通りで ある(表 2). また, 被験者 1 人あたりの試行回数は, 提示 パターンを 3 回ずつ実施するため, 12×3=36 試行である.

なお, 被験者は, 実験 1-a と同様の成人 13 名である.

5.4 実験手順

具体的な実験手順はそれぞれ以下の通りである.

- (1) 表2の提示パターンのうちランダムに1つを提示する
- (2) 直線運動する視覚刺激を提示する

表2 実験 1-b の提示パターン

		直進速度 [m/s]				
		0.0	4.0	8.0	16	
回転速度 [°/s]	4.0	L0_C1	L1_C1	L2_C1	L4_C1	
	8.0	$L0_C2$	$L1_C2$	$L2_C2$	$L4_C2$	
	16	L0_C4	L1_C4	L2_C4	L4_C4	

(3) LV を知覚したときにボタンを押させる

- (4) 視覚刺激に回転運動を加える
- (5) CV を知覚している間, ボタンを押させる
- (6) 40 秒後に画面を暗転し、被験者に CV 強度を 101 段
 階(0~100)で回答させる
- (7) 疲労による影響を排除するために十分なインターバ ルを設ける
- (8) 画面を明転し、被験者に運動残効が発生していないことを確認させる
- (9) 残りの提示パターンに対して (1)~(8) を繰り返す

直進速度 0.0m/s のパターンの場合, (2), (3) の手順をス キップして実験を行った.また,実験 1-a と同様, (7) の インターバルとは別に,5 試行毎に1分以上の休憩を設け た.なお,被験者の負担を考慮し,提示パターン 12 試行 を3日に分けて行った.

5.5 実験結果

回転運動を提示する前の LV の潜時,提示後の CV の潜時・継続時間・主観強度の結果を図5に示す.なお,図中のエラーバーは標準誤差を表す.図5(a)より,直進速度が上がるほど LV の潜時が短くなることが確認できる.また,一元配置の分散分析を適用した結果,有意差が認められた($F_{(2,12)} = 22.49$, p < .001).また,Bonferroni法による多重比較より,8.0°/sと16°/sの条件間では有意水準5%で,その他の条件間において有意水準1%で有意差が見られた.このことから,直進速度が上がることで LV を強く知覚し,条件ごとに強度の差は明確であったことを示す.

また,図 5 (b) (c) より, CV の潜時・継続時間に対して, 直進速度が上がるほど潜時が長くなり,継続時間が短くな る傾向を確認した.これは直進速度が大きくなるほど CV を弱く知覚することを示している.ただし,実験 1-a では 回転速度が 0.0°/s の場合に異なる傾向を示していたが,今 回の実験結果では直進速度 0.0m/s の場合も同様の傾向を 示している.図 5 (c) 結果からも,直進速度によって CV の強度が明確に異なって知覚していることがわかる.

ここで、潜時、継続時間、主観強度それぞれに対して、回転速度と直進速度を要因とする回転速度(3)×直進速度 (4)の二元配置の分散分析を行った.結果として、CVの潜時、継続時間、主観強度すべてにおいて、交互作用に有意差 が認められた(潜時:F(6,12) = 10.39, p < .001,継続時間: $F_{(6,12)} = 9.52, p < .001, 主観強度: F_{(6,12)} = 3.52, p = .0041).$ そこで、単純主効果の検定を行ったところ、CVの潜時と継 続時間は、回転速度 4.0°/s(潜時: $F_{(3,12)} = 40.86, p < .001,$ 継続: $F_{(3,12)} = 40.86, p < .001)$ と 8.0°/s($F_{(3,12)} = 15.08, p$ < .001, $F_{(3,12)} = 15.08, p < .001$)において直進速度の単純主

(a) 回転運動を提示する前の LV の潜時

(b) CV の潜時

効果が見られた. CV 強度の主観強度においては、すべての 回転速度で直進速度の単純主効果が見られた (4.0°/s: $F_{(3,12)}$ = 22.19, p < 0.001, 8.0°/s: $F_{(3,12)}$ = 30.65, p < 0.001, 16°/s: $F_{(3,12)}$ = 11.63, p < 0.001). そこで、CV の潜時、継続時間, 主観強度の単純主効果が見られた条件に下位検定として Bonferroni 法を用いて多重比較を行った. それぞれの結果 において、確認された有意差を図中に記載した.ただし、本 実験では主に直進速度が CV に与える影響について確認す るため、回転速度における多重比較の結果は割愛する.

これらのことから, 直線運動と回転運動が同時に含まれる 視覚刺激において, 直進速度を増加させると, CV 強度が減 少する効果を確認した.ただし,全ての条件において交互作 用が見られることから,その効果は回転速度が上がるほど小 さくなっていくことも同時に明らかにした.これは実験 1-a で確認した LV への影響と概ね同様の傾向であったが,主観 強度にも交互作用が確認できたという点に違いがあった.こ のことから,回転速度の違いによって直進速度の影響力が増 減する現象は,被験者が明確に知覚できるほど大きな影響で あったと考えられる.また,確認できる条件間の有意差の数 から, 直進速度が CV に与える影響は,回転速度が LV に与 える影響より大きいことが示唆された.

6. 実験 2:知覚する LV と CV の強度比の分析

6.1 実験目的

実験1の結果から,直線運動と回転運動が共存する条件 において,直進速度がLVだけでなくCVにも影響するこ とを明らかにした.また同様に,回転速度がCVだけでな くLVに影響することも明らかにし,このことからLVと CVが負の相関関係にあることを示した.ここで,直進速 度が上がるほど回転速度の影響が小さくなり,回転速度が 上がるほど直進速度の影響が小さくなった.これは,片方 の運動速度が大きくなることで,もう片方の運動速度によ る運動感覚への影響力が減少することを意味している.

ここで、このような現象が起こっている理由として、どちらかの運動感覚を強く知覚している場合、その感覚に意識が集中し、もう一方の感覚がわかりづらくなっていることが考えられる.そこで、前進しながら回転するベクションを LV と CV に分離した際に、2 つの運動感覚がどの程度の割合で知覚されているのか確認する.

6.2 実験方法

LV と CV をどの程度の割合で知覚しているのかを確認 する方法として,被験者に知覚した LV 強度と CV 強度を 足して 100 になるように回答させる.これにより,直進速 度と回転速度ごとにどのようなベクションを知覚するのか 明らかにする.この方法であれば,片方の運動感覚をほと んど知覚しない場合や LV 成分の強い場合,CV 成分の強い 場合,LV 成分と CV 成分が同程度になる場合など,視覚刺 激ごとに知覚するベクションを分類することができる.ま た,視覚刺激の直線運動と回転運動は同時に開始し,被験 者がLVとCV双方の強度を十分に把握するまで提示した.

6.3 実験条件

実験1で確認した現象が起こる理由をより細かく分析す るため、使用する視覚刺激は、直進速度を4.0m/s,8.0m/s, 12m/s,16m/s,20m/sの5段階とし、回転速度を4.0°/s, 8.0°/s,12°/s,16°/s,20°/sの5段階とした。つまり、視 覚刺激の提示パターンは、直進速度5段階と回転速度5段 階の組み合わせとなる5×5=25通りである(**表**3).また、 被験者1人あたりの試行回数は、提示パターンを3回ずつ 実施するため、25×3=75試行である.

被験者は,成人13名(男性10名,女性3名)である. 6.4 実験手順

実験前に,被験者が LV 強度と CV 強度の両方を把握し 回答できるよう十分に練習させた.

具体的な実験手順は以下の通りである.

- (1) 表3の提示パターンのうちランダムに1つを提示する
- (2) LVとCVの強度を足して100になるように回答させる
- (3) 画面を暗転し,疲労による影響を排除するために十分 なインターバルを設ける
- (4) 画面を明転し、被験者に運動残効が発生していないことを確認させる
- (5) 残りの提示パターンに対して (1)~(4) を繰り返す

ここで,(3)のインターバルとは別に,7試行毎に1分以上の休憩を設けた.また,実験1と同様に,被験者の負担を考慮し,3日に分けて実験を行った.

		直進速度 [m/s]				
	\searrow	4.0	8.0	12	16	20
回転速度 [°/s]	4.0	L1_C1	$L2_C1$	L3_C1	$L4_C1$	$L5_C1$
	8.0	$L1_C2$	$L2_C2$	L3_C2	$L4_C2$	$L5_C2$
	12	L1_C3	L2_C3	L3_C3	L4_C3	L5_C3
	16	L1_C4	$L2_C4$	L3_C4	$L4_C4$	$L5_C4$
	20	$L1_C5$	$L2_C5$	L3_C5	$L4_C5$	$L5_C5$

表3 実験 2-a の提示パターン

6.5 実験結果

実験結果を図6に示す. 図中の白色部分は第1四分位数 と中央値間, 灰色部分は中央値と第3四分位数間, 各デー タの下端は最小値, 上端は最大値を表す. なお, 外れ値は 白丸, 平均値は黒丸で図中に記載した. また, この図は LV 側に着目したグラフであるため, 数値が50%より大きい場 合, LV 成分が強いベクションを知覚したことを表してお り, 50%未満の場合は CV 成分が強いベクションを知覚し たことを意味する. これより, 視覚刺激の直進速度と回転 速度の組み合わせごとに, 被験者が概ねどの程度の割合で LV 成分と CV 成分を知覚したのかがわかる.

図より直進速度が上がるにつれて、LV 強度の割合が増加し CV 強度の割合が減少すること、同様に回転速度が上がるほど、CV 強度の割合が増加し、LV 強度の割合が減少することが確認できる.また、直進速度と回転速度の組み合わせによって、LV と CV の強度比が概ね一定の割合で増減していることを示している.

また,強度比が0%もしくは,100%に近い視覚刺激では, 被験者間の回答のばらつきが小さくなる傾向が読み取れる. これは,実験1でわかった回転速度が大きい条件で直進速 度の効果が弱まり,直進速度が大きい条件で回転速度の効 果が弱まる現象に対して,知覚している感覚の割合が影響 していることを示唆する結果である.

7. 考察

実験1の結果より、回転速度が大きくなるとCV強度が 増加するだけでなくLV強度が減少することがわかった. また、直進速度が大きくなるとLV強度が増加するだけで なく、CV強度が減少することを確認した.これはすなわ ち、LVとCVが負の相関関係にあることを示している.

このとき, 概ね LV と CV で同じ傾向にあるが, 比較的 直進速度が CV 強度に与える影響の方が大きい傾向にある. この原因として, 直進速度は m/s であり, 回転速度は[°]/s であることから, 直進速度の条件間の差が回転速度の条件 間よりも大きかったことが考えられる.しかし,実験2の

図 6 LV 強度と CV 強度の割合

結果から LV, CV 共に概ね一定の割合で増減していること からこの影響は排除できる.また別の原因として, LV と CV では発現機序や脳活動が異なることが考えられる.等 速運動の視覚刺激の場合, LV の知覚には主に視覚の不一 致が関わるのに対し, CV の知覚には視覚の不一致に加え て平衡感覚の不一致も関与する [7].つまり, LV 成分に比 べると CV 成分は発生する際に実世界との矛盾が多いため LV の方が知覚しやすく, LV 成分の影響が比較的大きいこ とが考えられる.この仮説は,実験1において, LV の主 観強度に対して回転速度と直進速度間に交互作用がなかっ たが, CV の主観強度に対しては交互作用があったという 結果とも合致している.

8. むすび

我々は先行研究において,直線運動の要素が CV に影響 することを示し,LV と CV を同時に知覚する場合,一方 のベクション強度がもう一方のベクション強度に影響を与 える可能性を示唆した.これは,LV と CV が共存する VR コンテンツを設計した際に,LV と CV を独立に設計して しまうと,想定通りの運動感覚を体験者が知覚しない可能 性を示唆している.そこで本稿ではLV と CV 双方に着目 し,直線運動と回転運動の速度がLV と CV 双方に与える 影響とLV と CV の関係について分析した.

実験1では、視覚刺激の直進速度が大きくなるにつれて、 LV 強度が増加し、CV 強度が減少すること、そして、回転 速度が上がるにつれて、CV 強度が増加し、LV 強度が減少 することを明らかにした.これより、LV と CV が負の相関 関係にあることを示した.ただし、片方の運動速度が上が るほどもう片方の運動速度による影響が小さくなることが わかった.また、この現象において、直進速度が CV に与 える影響と回転速度が LV に与える影響で違いが見られた.

そこで、これらの原因を探るべく、実験2では、前進し ながら回転するベクションについて、運動速度ごとにLV とCVがどの程度の割合で知覚されているのかを確認した. 結果として、運動速度によって、LVとCVの強度比が概ね 一定の割合で増減していることが示された.以上の結果か ら、LVとCVで異なる傾向になった原因が、視覚刺激の種 類の違いによるものではなく、LVとCVの発生メカニズム の違いによるものである可能性を示唆した.

謝辞

本研究の実験の一部を担当した奥川夏輝氏,橋本萌起氏に 感謝の意を表する.

参考文献

 S. Palmisano, R. S. Allison, M. M. Schira, and R. J. Barry: "Future challenges for vection research: definitions, functional significance, measures, and neural bases," *Frontiers in Psychology*, Vol. 6, pp. 1 - 15, 2015.

- [2] T. Seno, and H. Fukuda: "Stimulus meanings alter illusory self-motion (vection) - experimental examination of the train illusion," *Seeing and Perceiving*, Vol. 25, No. 6, pp. 631 - 645, 2012.
- [3] M. H. Fischer and A. E. Kornmüller: "Optokinetisch ausgelöste bewegungswahrnehmung und optokinetischer nystagmus," *Journal für Psychologie und Neurologie*, Vol. 41, pp. 273 - 308, 1930.
- [4] S. Davis, K. Nesbitt, and E. Nalivaiko: "Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters," Proc. IE 2015, Vol. 167, pp. 3 - 14, 2015.
- [5] Y. Koinuma, K. Miyamoto, and M. Ohkura: "Experimental Evaluation of Immersive Feeling in VR System with HMD," Proc. HCII 2017, pp. 678 - 686, 2017.
- [6] S. Palmisano, S. Summersby, R. G. Davies, and J. Kim: "Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows," *Journal of Vision*, Vol. 16, No. 14, 1 - 19, 2016.
- [7] 飯田政弘: "18. Vection の現象学", Equilibrium Research, Vol. 63, No. 4, pp. 285 - 290, 2004.
- [8] Y. Koga, A. Konishi, S. Hashiguchi, A. Kimura, F. Shibata, and H. Tamura: "Analysis of circular vection deriving from mutual effect between rotational and linear visual stimuli," Proc. ASIAGRAPH 2017, Vol. 12, No. 1, pp. 27 - 32, 2017.
- [9] T. Brandt, J. Dichgans, and E. Koenig: "Differential effects of central versus peripheral vision on egocentric and exocentric motion perception," *Experimental Brain Research*, Vol. 16, No. 5, pp. 476 - 491, 1973.
- [10] 島村達也,北島律之: "仮想経路での移動における時空間の 評価",電子情報通信学会技術研究報告,HIP, Vol. 103, No. 107, pp. 57 - 60, 2007.
- [11] Y. Seya, M. Yamaguchi, and H. Shinoda1: "Single stimulus color can modulate vection," *Original research*, Vol. 6, pp 1 - 12, 2015.
- [12] 三橋哲雄,矢野澄男,畑田豊彦: "画像と視覚情報科学(映像情報メディア基幹技術シリーズ)",コロナ社, p. 172, 2009.
- [13] I. P. Howard and T. Heckmann: "Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays," *Perception*, Vol. 18, No. 5, pp. 657 - 665, 1989.
- [14] 柳在鎬,橋本直己,佐藤誠:"没入型ディスプレイにおける 視覚誘導自己運動の分析",電子情報通信学会技術研究報告, MVE, Vol. 103, No. 107, pp. 63 - 68, 2003.
- [15] 小西晃広,橋口哲志,木村朝子,柴田史久,田村秀行:"リ ニアベクション現象を高める広視野空間での周辺視刺激の 活用とその効果",電子情報通信学会論文誌, Vol. J100-D, No. 2, pp. 162 - 170, 2017.
- [16] 玉置純也,村上和人:"眩しくないプロジェクタシステムの 提案",情報処理学会研究報告,CVIM研究会報告2008, No. 36, pp. 43 - 46, 2008.
- [17] H. Ito and I. Shibata: "Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity," *Vision Research*, Vol. 45, No. 4, PP. 397 - 402, 2005.
- [18] A. Bubka and F. Bonato: "Expanding and contracting optic-flow patterns and vection," *Perception*, Vol. 37, No. 5, pp. 704 - 711, 2008.
- [19] A. Deborah and P. Stephen: "The role of perceived speed in vection: does perceived speed modulate the jitter and oscillation advantages?," *PLoS One*, Vol. 9, No. 3, pp. 1 - 14, 2014.
- [20] 妹尾武治,永田喜子: "没入傾向とベクション強度は相関するのか?没入感に関する挑戦研究",日本バーチャルリアリティ学会論文誌, Vol. 21, No. 1, pp. 3 6, 2016.