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ABSTRACT

This paper introduces a toolkit with camera calibration, monocular
visual Simultaneous Localization and Mapping (vSLAM) and reg-
istration with a calibration marker. With the toolkit, users can per-
form the whole procedure of the ISMAR on-site tracking competi-
tion in 2015. Since the source code is designed to be well-structured
and highly-readable, users can easily install and modify the toolkit.
By providing the toolkit, we encourage beginners to learn tracking
techniques and to participate in the competition.

Index Terms: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Motion; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Camera pose tracking is an essential process for merging real and
virtual objects in augmented reality. In order to evaluate the tech-
niques, on-site tracking competitions have been organized in IS-
MAR since 2008. In 2015, we organize the competition for evalu-
ating visual SLAM techniques. In the competition, the participants
first acquire the world coordinate system at a starting area, then
move a device along a given path in an unknown environment, and
finally do tasks at given coordinates.

In order to encourage beginners to learn tracking techniques
and to participate in the competition, we first provide an all-in-one
toolkit for performing the whole procedure of the competition. The
toolkit includes camera calibration, visual SLAM and registration
with a calibration marker. The source code is (i) available online
under the modified BSD licenses, (ii) structured to be highly read-
able with less lines of code, and (iii) dependent on minimum exter-
nal libraries. Therefore, even undergraduates can easily install the
toolkit within a few hours, and implement their own ideas on the
toolkit. Since the toolkit is designed to be educational, we name
it abecedary tracking and mapping (ATAM). In this paper, we de-
scribe the implementation of the techniques used in the toolkit.

2 ATAM

ATAM follows keyframe based SLAM proposed in PTAM [5] and
is composed of initialization, tracking, mapping, bundle adjustment
(BA) [6] and relocalization as illustrated in Figure 1. The difference
is that both tracking and mapping run on the same thread while BA
runs on another. We calibrate a camera beforehand [10] and use
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Figure 1: Flow of ATAM. Tracking and mapping run on one thread,
while BA runs on another.

Figure 2: Interactive initialization. After mapping keypoints as while
circles, new keypoints are detected for mapping as blue ones.

undistorted images for all the processes. The source code is avail-
able online1 and compiled with C++ Standard Template Library,
OpenCV 3.02, and a sparse BA library3.

2.1 Interactive Initialization
As in PTAM, users press a button to start ATAM. FAST key-
points [8] are detected in the first keyframe and tracked in incom-
ing frames with the Lucas-Kanade feature tracker (KLT) [1]. When
users press the button again, the second keyframe is captured and
the relative pose between the first keyframe and the second one is
computed from tracked keypoints [7]. Finally, the 3D positions of
the keypoints are computed by triangulation and optimized with
BA. After initialization, new keypoints are detected in the second
keyframe and tracked with KLT for mapping as illustrated in Fig-
ure 2. Note that the quality of the initialization is checked with
the mapping criterion in Section 2.3, and the initialization is not
finished until satisfying the criterion.

2.2 Tracking
In order to track camera poses, 2D-3D correspondences are ac-
quired in every frame with the following three tracking techniques.

1. Tracking mapped keypoints in consecutive frames.

1https://github.com/CVfAR/ATAM
2http://opencv.org/
3http://www.uco.es/investiga/grupos/ava/node/39
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2. Projecting all the mapped keypoints to the current frame.
3. Matching the current frame with the nearest keyframe.

First, mapped keypoints in the previous frame are tracked in the
current one with KLT. From the tracked mapped keypoints, a cam-
era pose is computed by solving the Perspective-n-point problem.
Second, all the keypoints in the map are projected onto the current
frame and matched if FAST keypoints are detected near the pro-
jected ones. Third, keypoints in the current frame are matched with
those in the nearest keyframe with ORB descriptors [9] as well as
relocalization in Section 2.5.

2.3 Mapping
Keypoint correspondences between two keyframes are triangulated
and inserted into the map. A current frame is stored as a keyframe
if the normalized baseline B between the current frame c and the
nearest keyframe nk is wider than a certain threshold. B is computed
as

B =
∥(−RRR−1

c TTT c)− (−RRR−1
nk TTT nk)∥/2

∥PPPm − ((−RRR−1
c TTT c)+(−RRR−1

nk TTT nk))/2∥
(1)

where [RRRc|TTT c] is the pose of the current frame, [RRRnk|TTT nk] is that
of the nearest keyframe and PPPm is the 3D median coordinate of
tracked mapped keypoints. The correspondences are obtained by
tracking keypoints from the previous keyframe to the current frame
with KLT. Since KLT runs in real time, one thread is sufficient for
both tracking and mapping. By contrast, epipolar search for com-
puting the correspondences in PTAM is highly computational.

2.4 Bundle Adjustment
Both keyframe poses and points in the map are optimized with
BA [6]. With M keyframes, the cost function E is designed as

E =
M

∑
i

∑
j∈FFF i

∥∥pppi j − pro j
(
TTT i,RRRi,PPP j

))
∥ (2)

where FFF i represents a set of points observed in keyframe i, pppi j rep-
resents an observed image coordinate of point j in keyframe i, TTT i
and RRRi represent translation and rotation of keyframe i and PPP j is 3D
coordinate of point j. pro j() is a function for projecting the point
PPP j to the keyframe i using TTT i and RRRi. In the current implementa-
tion, local BA with a few keyframes is incorporated and runs every
time a new keyframe is stored. Global BA with all the keyframes
can also be implemented.

2.5 Interactive Relocalization
We provide an interface for indicating a desirable camera position
for relocalization if tracking has failed similar to [3]. The keyframe
for relocalization is automatically selected based on the camera po-
sition where tracking has failed or manually selected on the inter-
face. In the interface, edges detected in the selected keyframe are
overlaid onto the camera image as illustrated in Figure 3. Relo-
calization is based on matching the current frame with the selected
keyframe with ORB descriptors.

3 REGISTRATION

In ATAM, the local coordinate system is equivalent to the camera
coordinate system of the first keyframe and can be registered with a
different coordinate system. The registration is generally necessary
for acquiring the scale of real environment in monocular SLAM [4].
In the competition, the world coordinate system will be defined on
a calibration marker.

The transformation [RRR|TTT ] between camera pose in the world co-
ordinate system [RRRwww|TTT www] and that in local one [RRRlll |TTT lll ] is described
as [

RRRwww TTT www
000 1

]
=

[
sRRRlll sTTT lll
000 1

][
RRR TTT
000 1

]
(3)

Figure 3: Interactive relocalizaion. Edges detected in a keyframe
image for relocalization are overlaid onto a camera image.

where s is a scale factor from the local coordinate system to the
world one. The scale factor is computed from both world and local
camera poses at view i and view j as

s =
∥TTT wi −RRRliRRR

−1
l j TTT w j∥

∥TTT li −RRRliRRR
−1
l j TTT l j∥

(4)

where subscripts w and l represent the world coordinate system and
the local one respectively. We can compute the average scale factor
from multiple sets of the world and local camera poses. After com-
puting the factor, [RRR|TTT ] is computed by Equation 3. With multiple
sets of the camera poses, the average translation is calculated and
the average rotation is calculated by extracting orthogonal elements
from summed rotation matrix by SVD [2].

4 CONCLUSION

This paper introduce a complete toolkit for performing the on-site
tracking competition of ISMAR. Though the toolkit is initially de-
signed for tracking competitions, its usage is obviously not limited
to the competitions. Users can develop any applications such as 3D
interfaces and robot motion control with the toolkit. In lectures and
exercises on computer vision, the toolkit can be utilized for teach-
ing SLAM techniques. We expect beginners to use the toolkit, to
develop their own ideas and to participate in the competition.
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