
A Distributed Framework for Creating Mobile Mixed Reality Systems

Tsubasa Ogino*, Yuki Matsuda*, Le Van Nghia*, Daisuke Kawabata*,

Kento Yamazaki*, Asako Kimura*, and Fumihisa Shibata*

*Graduate School of Information Science and Engineering, Ritsumeikan University

Abstract—This paper describes development of a

distributed framework for creating mobile mixed reality

(MR) systems. The goal of the framework is providing the

same MR space for a variety of mobile devices which

connect via wireless network. This paper discusses a design

policy of our framework, system architecture for

supporting diverse mobile devices, including an easy-to-

implement script language for developing applications. We

implemented our framework based on the proposed design

and developed trial applications using our script language.

As a result, we confirmed that applications are easily

developed using our framework.

Keywords—mixed reality, augmented reality, mobile

devices, distributed framework

I. INTRODUCTION

Recently, mobile devices such as smartphones have rapidly
spread, and mixed reality (MR) systems on mobile devices
have been drawing attention. However, if we keep in mind the
spread of this type of system, it is inefficient to develop each
application individually from scratch. Therefore, an easy way
to develop such MR applications is imperative to the further
progress of mobile MR systems.

 Bauer et al. proposed a framework for wearable computers,
called DWARF (Distributed Wearable Augmented Reality
Framework) [1]. The main aim of DWARF is to enhance
reusability of systems based on the idea of modularizing AR
functions. Piekarski et al. proposed software architecture for
developing AR applications, called Tinmith-evo5 [2]. It has a
high level of rendering component, a tracker to estimate the
position and orientation. However, it is not designed for current
mobile devices, such as smartphones and tablets. MacIntyre et
al. proposed Argon AR Web Browser [3]. This is an
architecture that is focused on the cooperation in WWW
services and AR. Schmalstieg et al. proposed a framework for
handheld devices, called Studierstube ES [4]. This does not
consider the low-performance mobile devices such as cellular
phones. Metaio releases Junaio [5], which is a mobile
augmented reality browser, and AREL [6], which is a
JavaScript binding, for developing mobile AR applications.

However, they adopted a stand-alone architecture, so they do
not support to share the same MR space with multiple devices.
Recently, the number of software for game developments has
increased. Some of them support AR functions. For example,
Unity released by Unity Technology [7] has APIs for creating
AR applications. However, it is required to implement the code
for networking if the developers want to create the AR
application which synchronizes virtual contents among mobile
devices.

 In addition, outstanding technological advances can be
expected due to the rapid development of mobile devices
including performances and styles. It is therefore preferable to
implement such a framework that could absorb variety of
future innovations.

From this viewpoint, we designed and implemented a
distributed framework for mobile MR systems, based on three
demands.

(1) The contents of motion in MR space can be synchronized

and shared with multiple mobile devices

(2) Differences in types of mobile devices or perfomances can

be absorbed

(3) Application developers can create mobile MR systems

easily

II. DISTRIBUTED FRAMEWORK

A. Design Policy

In our study, we aim to achieve a framework that is capable
of changing the style of information presented depending on
the performance of mobile device. We assume that multiple
users holding different mobile device working together in the
same space.

B. System Architecture

We design the system architecture of our framework to
meet three needs described above (see Fig. 2).

This system is composed of MR Server, Streaming Server,
Mediator, Client, and Thin Client. We adopt the client-server
architecture to meet (1). Client and Mediator send contents’
information to MR Server, and MR Server receives them. MR

(a) (b) (c) (d)

Fig. 1. Scenes of applications developed with our proposed framework. (a) and (b) are scenes of MR Panzer. (c) and (d) are scenes of BKC Guide.

Server manages all contents and updates this information using
a script engine. The script engine is a module to analyze and
run scripts. In order to meet (2), we employed Streaming
Server and Mediator. In our framework, mobile devices are
divided into Thin Client and Client depending on their
performances or intended uses. Thin Client is a low-
performance mobile device such as cellular phones. Therefore,
Mediator consistently does both rendering and tracking instead
of Thin Client. Client is a high-performance mobile device
such as smartphones and tablets. As shown in Fig. 3, Streaming
Server renders computer generated image (CGI) and tracks
according to Client’s states. Client’s rendering and tracking
loads dynamically change using Streaming Server. In case 1,
Client tracks and renders MR Image by itself. In case 2, Client
sends its position and orientation to Streaming Server.
Streaming Server renders CGI using received information. In
case 3, Client sends a background image to Streaming Server.
Streaming Server tracks using received information and
renders CGI. In these two cases, Streaming Server sends
compressed CGI to Client, and Client renders a MR image with
it. Client’s rendering and tracking loads are estimated based on
each processing time. To meet (3), functions are separated into
Application Layer and System Layer to enhance the reusability
of System Layer. Furthermore, we designed our own script
language to facilitate the content manager.

C. Content Control Mechanism

In order to develop MR application easily, it is important to
simplify the placement of contents in virtual space. This means
that the mechanism to easily control contents’ position and
orientation in virtual space is required. We call it content
control mechanism, and we designed it with an emphasis on
three points.

(1) Application developers can control complicated motions of

contents.

(2) Application developers can alter motions of contents such

as users’ intercations.

(3) Application developers can easily develop a program code

to control contents.
In Fig. 2, contents control mechanism includes a physics

engine, a script engine, a content manager, and a client
manager. The contents controlled with our proposed
framework consist of clients that users hold and virtual objects
such as CG. Clients are controlled with the client manager.
Virtual objects are controlled with the content manager. Virtual
objects consist of more than one component. The components
include 3D CG, a sound, a skeletal animation. The skeletal
animation consists of 3D CG model and the motion made by
dedicated software. The skeletal animation has properties to
control itself with scripts (see Table 1). We have considered
“play,” “pause,” and “stop” as the minimum requirement to
control the skeletal animation. In additional, there are “loop
playback counts” and “playback speed” as properties.

Virtual objects have properties (see Table 2), which are
updated by a script language to control virtual objects.
Furthermore, application developer can deploy transparent
virtual objects to realize hidden surface removal and collision
detection. Clients also have properties (see Table 3), which are
used in the scripts.

D. Connection and Interpolation

Contents control mechanism is executed on MR Server.

Clients show the MR space to users, so MR Server needs to

send MR information to clients according to the interval for

updating the screen of the client. However, it is difficult to

connect between MR Server and multiple clients constantly

A
p

p
li

ca
ti

o
n

L
a

ye
r

S
ys

te
m

 L
a

ye
r

Streaming

Server

Tracker
CGI

Renderer

C
o

m
m

u
n
ic

a
ti
o
n

TrackerRenderer

User

Interface
Camera

Client
Communication

Communication

User

Interface
Camera

Thin Client

TrackerRenderer

Mediator
CommunicationCommunication

MR Server

Physics Engine Script Engine Content Manager Client Manager

Content DB
Model Data

ScriptScriptScript

Application Logic

ScriptScriptScript

Streaming Server Client

Tracking

CGI
Rendering

Case 1: Client’s processing load is light

Streaming Server Client
Position and
Orientation

CGI Tracking

CGI
Rendering

Case 2: Client’s CGI rendering load is heavy

Streaming Server Client
CGI

Rendering

Tracking

Background Image

CGI

Case 3: Client’s rendering and tracking loads are heavy

Fig. 2. System Architecture of our proposal framework

Fig. 3. Cooperation of Streaming Server and Client

Table 1. Properties of motion data

Type and name Meaning

int state
play (0), pause (1),

stop (2)

int loop loop playback counts

float speed playback speed

Table 2. Properties of a virtual object

Type and name Meaning

int id ID

int classId class ID

Position3D pos 3D position

Orientation3D ori 3D orientation

Scale3D scale 3D scale

int presen
visible (0), translucent (1),

hidden (2), invisible (3)

Table 3. Properties of a client

Type and name Meaning

int id ID

int classId class ID

Position3D pos 3D position

Orientation3D ori 3D orientation

because of data size and communication bandwidth. In our

study, MR space is updated with the script engine on MR

Server constantly about 30 times per second, and Clients

receives information of MR space from MR Server at a

constant interval ΔT. While waiting for next connection,

Clients display CG objects by interpolating between last and

current information received from MR Server.

We employ Bezier curve for interpolation (see Fig 4). In

order to smoothly reconstruct motion of CG object on the

client, by the current and previous positional information Pt

and Pt-3dt (Note that ΔT=3dt) sent from the MR server, the

system generates control points Pt-dt and Pt-2dt from the

velocity vector Vt and Vt-3dt. In this case, a point at where the

velocity vector changes rapidly, such as a ball bounce, is

defined as cusp, and two curvilinear intervals including the

cusp are interpolated.

E. Time Synchronization Mechanism

We consider communication delay between MR Server

and Clients when application developers use sounds and

animation contents. The communication delay of each Client

is different, so each client receives contents’ information from

MR Server at different time. Due to this time difference，each

Client starts playing sound and animation at different time.

Therefore, we designed a mechanism to synchronize the

starting time of interpolating, playing sounds, and animations.

MR Server and Clients synchronize application time when

each Client starts. Time synchronization is carried out by

measuring round-trip communication time. In order to

eliminate the deviation between the Clients caused by the

communication delay, we set a time of delay between the

Client and the MR Server as delay [ms], which is uniformed in

all the Clients. As shown in Fig. 5, Clients render contents

back to delay with interpolation. In order to unify time to play

sound and animation with all the Clients, MR Server

additionally sends the time when the sound and animation

started to play. Clients begin to play when it reaches the

starting time received from the MR Server. If this received

time is beyond the starting time, the Clients calculate the

difference between the current time and play from the middle.

With this mechanism, all Clients can play simultaneously

regardless to the communication delay.

F. Script Language

Our script language is designed like object-oriented

language, such as Java and C++. Even when application

developers use this language for the first time, they will be

able to develop easily only by understanding the concept of it.

Moreover, it is specialized in controlling MR contents, and it

is possible to easily use this function. We show a part of

variable types, operators, and statements in Table 4 to 6.

Our script language has three basic classes, named

MRWorld, MRObject, and Client. In order to create

applications, the developers add codes into sub classes that

inherit these three basic classes. They can also declare

variables in classes’ fields and methods.

MRWorld class: MRWorld class stores the entire

information of MR spaces where there are clients and objects.

MRWorld has methods, such as adding objects into MR space

and deleting objects from there. Moreover, when the client

connection states are changed, or the event such as a collision

between objects occurs, call back methods are called. We

show some methods in Table 7.

MRObject class: MRObject class stores the information of

objects. Field variables that store properties such as the

position and orientation are prepared beforehand and used for

MR Server Clientcommunication
Interpolation

interpolation
interval

update with
scripts

dttP 3

dttP

dttP 2
dttV 3

tP

tV

MR information

MR information

MR information

Fig. 4. The outline of interpolation

MR Server
0 1 2

T0

0
T0

1
T1

2
T2

T1 T2

0 1
T0 T1 request for rendering

delay time（delay）

Client

time synchronized

communication

latency

update with a script

rendering with interpolation
Fig. 5. Synchronization process of the client

Table 4. Variable Types

Type name Meaning Size

int integer type 4 byte

float floating-point type 4 byte

boolean boolean type 1 byte

string character string flexible length

Table 5. Operators

Operator Symbols

assignment =, +=, -=, *=, /=, %=
arithmetic +, -, *, /, %
comparison >, <, >=, <=, ==, !=
logical &&, ||
other new, isInstanceOf

Table 6. Statements

Statement Symbols

selection if, if~else, switch
iteration for, while
jump break, continue, return

Table 7. A part of methods of MRWorld class

Class methods

Method definition Meaning

void addObject(MRObject obj) adding an object

void removeObject(MR Object obj) removing an object

instance methods for callback

Method definition Meaning

void connectedClientCallback
(int clientClassId)

called at time to connect

a new client

void onCollisionCallback
(MRObject obj1, MRObject obj2)

called at time to collide

objects

controlling the motion of the objects. A callback method is

called every time MR space is updated, so some processes

such as moving objects are described in this method. We show

some methods in Table 8.

Client class: Client class stores the information of

clients. When interaction is detected, a callback method is

called. Therefore, processes related to interactions are

described within this method. We show some methods in

Table 9.

In addition to these basic classes, application developers

can use Position3D class to store a 3D position of the camera,

Orientation3D class to store a 3D orientation of the camera,

and Math class for numerical processes such as trigonometric

function.

III. EVALUATION OF OUR FRAMEWORK

A. Use of Streaming Server

Equipment We implemented MR Server, Client, and

Streaming Server and evaluated their performance. Table 10

shows the equipment for the evaluation.
Evaluation Method We calculate the processing time
[ms/frame] and the delay time [ms/frame] in case 1 and case 2
(see Fig. 3). The processing time is the fastest time in all
processes and the delay time is the total time of each process
between capturing background image and displaying MR
image. The number of CG objects placed in MR space is varied
2 to 20 in all even numbers. The CG object has a skeletal
motion and the number of the polygon of this object is 47187.
We calculate 100 times, and show the averages graphically.
We execute ARToolKit [8] on the Client to estimate the
position and orientation.
Result and Consideration In Fig. 6, we show the comparison
of processing time in case 1 and case 2 graphically. In Fig 7,
we show comparison of the delay time in case 1 and case 2
graphically. In case 1, if the number of CG objects increases,
both processing time and delay time also increase. In case 2,
the processing time is about 30 [ms/frame] constantly. The

delay time in case 2 is increasing, but the increased amount in
case 1 is less than one in case 2. In case 2, Streaming Server
renders CGI, so we consider that the performance for rendering
CGI improves with increasing CG objects. On the other hand,
in case 1, we consider that mobile devices cannot fill demands
of the performance to render CGI with increasing CG Objects.

B. Develop Trial Applications

We developed trial applications, called MR Panzer and
BKC Guide (see Fig. 1), using our implemented framework.

MR Panzer is a shooting game in which four users can play
at the same time. Each player uses buttons arranged on a touch
panel to control own CG tank and attacks other tanks with CG
missiles. The system can detect collisions between CG objects
and real obstacles by placing unseen virtual objects. The
system can play BGM and sound effects. Furthermore, MR
Panzer has minimum game elements. For example, if tanks are
attacked 5 times by other tank’s missiles, each tank returns to
the initial position. In MR Panzer, client’s position and
orientation are estimated using ARToolKit. In order to estimate
them unintentionally, we prepared an actual field and real

Table 10. Equipment for the evaluation
 Client MR Server

CPU Apple A7 Intel Corei7-2600

Memory 1 GB 8 GB

Network
IEEE802.11n
 (5GHz band) 300Mbps

 wired LAN
 (1.0 Gbps)

 Streaming Server

CPU Intel Corei7-3960X

Memory 16 GB

Video Card NVIDIA GeForce GTX 560
Network wired LAN (1.0 Gbps)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

P
ro

c
e
ss

in
g

ti
m

e
[m

s/
fr

am
e
]

The number of CG objects

case 1

case 2

Fig. 6. The processing time

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

D
e
la

y
ti
m

e
[m

s/
fr

am
e
]

The number of CG objects

case 1

case 2

Fig. 7. The delay time

Table 8. A part of methods of MRObject class

Instance methods

Method definition Meaning

Position3D getPosition() getting a positon

void setPosition
(float x, float y, float z)

setting a position

void setAsBox
(float h, float w, float l)

setting a cuboid shape

for collision

Instance methods for callback

Method definition Meaning

void updateCallback(float dt)

called at time to update
MR space.

dt is an elapsed time

from last update

Table 9. A part of methods of Client class

Instance methods for callback

Method definition Meaning

void updateCallback(float dt)

called at time to update

MR space. dt is an

elapsed time from last
update

void onInteraction
(int interaction_type)

called at time to occur

interaction

objects. In Fig. 1, four users are playing MR Panzer. As shown
in Fig. 1 (b), the entire field is displayed in the large monitor
placed in the back. We could see the synchronization between
the large monitor and the mobile device held by the user in
front of the image.

BKC Guide is an application for visitors to our campus
named Biwako Kusatsu Campus. The CG nameboard is
superimposed on the top of the building to indicate the name
and facilities of the building. As shown in Fig. 1 (d), the
building that is planned to be constructed in the future is
superimposed as CGI on the back of the existing building. We
place unseen virtual objects on the real buildings to occlude
them. In BKC Guide, client’s position and orientation are
estimated with physical sensors on the mobile device because
users can use them in every place with a minimum precision.
The GPS receiver is used for estimating the position, and each
user can estimate the orientation with the gyro sensor and the
direction sensor.

 As shown in Table 11 and Table 12, MR Panzer’s code is
about 300 lines, and BKC Guide’s code is about 150 lines. We
show a part of the code for placing CG nameboards in BKC
Guide because this is the typical code for initializing virtual
objects (see in Fig. 8). Although both Player class in MR
Panzer and User class in BKC Guide inherit Client class, the
lengths of these codes are different. The main reason for this is
that Player class includes the code for interactions to control
the Player's tank. In Fig. 9, we show the codes for these
interactions in MR Panzer. According to this code, each player
can control own tank using interactions.

 The developer of these applications is a student who has
knowledge about our framework and has an experience to
develop our script code. It takes 15 hours to develop MR
Panzer and an hour to develop BKC Guide. Scripts are mainly
composed of simple selection statements and assignment
statements. According to these results, we confirmed that our
framework could provide an easy way to develop this kind of
MR applications.

IV. CONCLUSION

In this paper, we proposed a distributed framework that

can create MR systems providing the same MR space for a

variety of mobile devices. In particular, we described the

system architecture of our proposed framework, the

mechanism to control contents, and the original script

language for developing mobile MR applications. As a result,

by using Streaming Server, we can distribute the loads.

Although each trial application’s script codes are about 300

lines, it gained a lot of popularity in the demonstration for

high school and college students. As a result, we could

indicate MR applications are easily developed with our

framework. The current framework employs ARToolKit and

physical sensors as a module to estimate client’s positions and

orientations. We can easily employ other methods by adding

them into a module, so we are planning to combine other

tracking methods using 3D feature points and to build other

trial applications.

REFERENCES

[1] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riß,
C. Sandor, and M. Wagner, “Design of a component-based augmented
reality framework,” Proc. Int’l Symp. on Augmented Reality 2001
(ISAR 2001), pp. 45 - 54 (2001.10)

[2] W. Piekarski and B. H. Thomas, “Tinmith-evo5 – An architecture for
supporting mobile augmented reality environments,” Proc. Int’l Symp.
on Augmented Reality 2001 (ISAR 2001), pp. 177 - 178 (2001.10)

[3] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson, “The
Argon AR web browser and standards-based AR application
environment,” Proc. Int’l Symp. on Mixed and Augmented Reality
(ISMAR 2011), pp. 65 - 74 (2011.10)

[4] D. Schmalstieg and D. Wagner, “Experiences with handheld augmented
reality,” Proc. 6th Int’l Symp. on Mixed and Augmented Reality
(ISMAR 2007), pp.3 - 15 (2007.11)

[5] Junaio: https://dev.metaio.com/junaio/ (last access 31 July 2014.)

[6] AREL: https://dev.metaio.com/arel/overview/ (last access 31 July 2014.)

[7] Unity: http://unity3d.com (last access 28 May 2014.)

[8] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana,
Virtual object manipulation on a table-top AR environment, Proc. Int’l
Symp. on Augmented Reality (ISAR2000), pp.111 - 119 (2000.10)

class BKCWorld : MRWorld {
 BKCWorld() {
 Nameboard gym;
 gym = new Nameboard(0);
 gym.setPos(90.0, 200.0, -500.0);
 gym.serOri(0.0, 45.0, 0.0);
 gym.setScale(2.0, 2.0, 2.0);
 MRWorld.addObject(bkc_gym);
 …
 }
 …
}

Fig. 8. The code of placing the CG Object for BKC Guide

Table 11. Lengths of code for MR Panzer

Class name Super class Length

TankWorld MRWorld 71

Player Client 50

Observer Client 12

Tank MRObject 73

Rocket MRObject 41

Explosion MRObject 21

Building MRObject 10

Wall MRObject 10

Table 12. Lengths of code for BKC Guide

Class name Super class Length

BKCWorld MRWorld 61

User Client 12

Nameboard MRObject 57

NewBuilding MRObject 10

UnseenBuilding MRObject 10

class Player : Client {
 Tank myTank;
 …
 void onInteraction(int interaction_type) {
 switch(interaction_type) {
 case 1: // key up
 this.myTank.moveUp(0.5);
 break;
 case 2: // key down
 this.myTank.moveDown(0.5);
 break;
 case 3: // key left
 this.myTank.turnLeft(4.5);
 break;
 case 4: // key right
 this.myTank.turnRight(4.5);
 break;
 case 5: // key s
 this.myTank.shootRocket();
 break;
 }
 }
}

Fig. 9. The code of interactions for MR Panzer

