
Z. Pan et al. (Eds.): ICAT 2006, LNCS 4282, pp. 122 – 131, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scalable Architecture and Content Description Language
for Mobile Mixed Reality Systems

Fumihisa Shibata, Takashi Hashimoto, Koki Furuno,
Asako Kimura, and Hideyuki Tamura

Graduate School of Science and Engineering, Ritsumeikan University
1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

fshibata@is.ritsumei.ac.jp

Abstract. We propose a new scalable architecture for mobile mixed reality
(MR) systems and a content description language to be used in such
architecture. Several architectures already exist to realize mobile MR systems,
however, most of them are device specific. The architecture we propose here is
able to accommodate a variety of devices, from mobile phones to notebook
PCs. We have already designed a concrete specification for our architecture and
content description language. We have also confirmed their viability by
implementing several applications on various mobile devices.

Keywords: Mixed Reality, Augmented Reality, Scalable Architecture, Content
Description Language, Mobile Computers.

1 Introduction

Outdoor application of augmented reality (AR) and mixed reality (MR) systems using
mobile devices is expected to be a rich field [1]. Though there are some developments
that implement AR/MR functionality on mobile phones and PDAs, their performance
is inadequate [2]-[5]. In general, the main reason for this is that today’s mobile
devices have neither enough computational power nor memory.

These limitations could be eliminated soon. Mobile phones will become
multifunctional, and we will soon have Ultra-Mobile PCs (UMPC). However,
conventional desktop and laptop PCs probably may offer more performance than such
UMPCs. AS a result, we need to consider frameworks that can overcome the
performance differences between various mobile devices, instead of hastily
attempting to implement AR/MR functions on a few low-performance devices. We
must ensure that we accommodate future device developments, as well as existing
performance differences between types and models of devices.

Based on these principles, we proposed a scalable architecture for various mobile
MR systems and a core content description language “SKiT-XML.” Our architecture
is based on a client-server model that distributes the functionalities required to realize
MR systems to the clients and a server. The architecture’s design and implementation
is explained in [6] and in the panel of [1].

Since then, our architecture has improved. Now, most of the primary functions
have been implemented. We also tested the effectiveness of our scalable architecture

122 F. Shibata et al.

 Scalable Architecture and Content Description Language 123

using various mobile devices and multiple applications. This paper provides an
overview of the architecture and language as well as the applications used for
confirmation.

In Section 2, we present related work. Section 3 describes our scalable architecture.
In Section 4, we present our content description language, which describes
information exchanged between the server and the clients. Section 5 presents the
experimental results of three application types based on our architecture. Finally,
Section 6 summarizes this paper and describes future directions.

2 Related Work

Some previous works in virtual and augmented reality have addressed a framework
or a toolkit for developing VR/AR systems. MacIntyre and Feiner proposed a
toolkit, called Columbia object-oriented testbed for exploratory research in
interactive environments (COTERIE), which provides language-level support for
building distributed virtual environments [7]. Feiner et al. also developed a Touring
Machine [8] based on COTERIE. The Touring Machine is an application that
provides information about Columbia’s campus. COTERIE realized a shared,
distributed database, and handles various trackers. Bauer and his colleagues
proposed distributed wearable augmented reality framework (DWARF), which is a
CORBA-based framework that allows rapid prototyping of distributed AR
applications [9]. DWARF consists of reusable distributed services such as trackers,
middleware to dynamically match these services, and extensible software
architecture. Unfortunately, this work does not apply to mobile phones. Mobile
phones with digital cameras are widespread and no other device seems to be an
ideal candidate as a handy AR/MR platform. Although current mobile phones do
not have sufficient CPU power to display videos and calculate camera parameters,
AR/MR on mobile phones will be used in the near future. Accordingly, it is
important for AR/MR frameworks to support mobile phones.

Miyamae et al. proposed a navigation platform for wearable AR/MR systems [10].
Miyamae’s platform can address a wide variety of navigation scenarios, based on
event, condition, and/or action-driven navigation systems. However, this platform is
not versatile, as only navigation applications for wearable computers are assumed in
this platform.

A software framework, Studierstube 4.0, was proposed in the Studierstube
Augmented Reality Project [11][12]. This framework aims at creating a complete
solution for AR on PDAs. Studierstube 4.0 is a cross-platform software frame-
work that includes various components, such as graphics API, scene graph libraries,
tracking middleware, multimedia playback tools, and so on. Wagner developed
an application named “Signpost” based on this framework [13]. The applica-
tion guides the user through a building by showing a map and an arrow, which
indicates the direction. The framework mentioned in [13] supports not only a fully
self-contained AR/MR system, but also a server-assisted AR/MR system. However,
this framework cannot be applied in extremely limited devices such as mobile
phones.

124 F. Shibata et al.

3 Scalable Architecture

3.1 Design Concept

There are varieties of mobile devices, ranging from mobile phones to notebook PCs,
and there are significant performance gaps between them. For example, some
contemporary notebook PCs have almost the same capability as desktop PCs.
However, mobile phones used in Japan do not have enough memory and have many
security limitations [14][15]. Accordingly, it is difficult to develop and run complex
applications on such devices. It is assumed that these performance gaps will continue
to exist in the future.

In order to absorb such performance gaps within the system, we decided to adopt a
client-server model, allowing the server to compensate for low-performance clients.

In general, a mixed reality system is comprised of the following six modules:

(1) Camera Module
The Camera Module captures raw images (real world scenes), on which virtual
objects are superimposed, augmenting the user’s perception.

(2) User-Interface Module
This module is an interface for users. It can present users with raw images
superimposed with MR information, and receives explicit input from users.

(3) Tracking Module
The Tracking Module is one of the most important components of an MR
system. This module detects the position and orientation of the client.

(4) Rendering Module
The Rendering Module draws virtual objects with the correct distance, position,
and orientation, based on the client’s position and orientation.

(5) Content-Management Module
This module manages the content database in the database system. The content
database includes 3D graphic models, text annotations, and 2D images.

(6) Application Module
The Application Module handles application-specific logic. It performs
processes such as switching current contents based on the user’s context, user
position, and/or input from the user.

In addition to these modules, one additional module completes the client
server/system.

(7) Client Management Module
This module manages client information and user context.

3.2 System Architecture

In order to accommodate the performance gaps between various types of mobile
devices, we distributed modules, one through seven, to the server and clients. Fig. 1
shows the system architecture. In this architecture, mobile devices are classified into
three groups: light-load clients (LLCs), middle-load clients (MLCs), and heavy-load
clients (HLCs).

 Scalable Architecture and Content Description Language 125

LLCs are also called thin clients. For LLCs, the system places only the camera and
the user-interface modules in client devices. All other functions are performed by
modules on the server. Since the vision-based tracking method is used for LLCs, an
LLC client has to communicate with the server each time it displays an image.
Therefore, it is not suitable for continuous presentation of the MR images. However,
since the client has only two modules, it is fairly easy to implement. For example,
mobile phones of NTT DoCoMo, the most widely used phones in Japan, can run
programs in an environment called “the i-αppli Runtime Environment.” In this
environment, only one i-αppli can run at a time because of security limitations [16].
In other words, when the camera function is used, i-αppli execution is interrupted and
the actual photographing depends completely on the user—the application program
cannot operate the shutter. This means that users have to press the shutter of the built-
in camera to capture every scene. The process flow for LLCs stated before is assumed
to be used in such limited environment.

System Layer

Application Layer

System Layer

Application Layer

System Layer

Application Layer

System Layer

Camera Camera

User-Interface

Tracking

Rendering

Light-Load Client Heavy-Load Client

Tracking

Rendering

Camera

User-Interface

Middle-Load Client

Communication Communication Communication

Server

Application

Application

Client
Management

TrackingRendering
Content-

Management

Content DB

Content-
Management

Application Layer

User-Interface

DB

Fig. 1. The system consists of a server (the lower box) and clients (the upper boxes). Both the
server and clients have two layers: System and Application Layer.

MLCs are clients that have tracking and rendering modules in addition to the
camera and user-interface modules. MLCs detect and send position and orientation
information to the server and receive local content related to the surrounding real
world. It is possible to continuously present MR images by drawing MR information
based on contents received from the server. However, since the application module on
the server selects the contents to be sent to the client, the clients can only render
images based on the contents sent by the server.

126 F. Shibata et al.

HLCs are self-contained clients that have all modules required to realize mixed
reality themselves. Because of this, HLCs must be relatively high-performance
devices. If the client is an HLC, a user can experience high-quality mixed reality in
real time by wearing a head mounted display (HMD). HLCs store and manage
perfectly duplicated copies of the server database. The HLC synchronizes the content
database with the server, so that the database is always up to date. Since the database
itself is on the HLC, the application module in the client can select the contents to be
presented to the user.

However, the server must have all five modules, other than the camera and user-
interface module, so that it can compensate for shortcomings of any client. The server
responds to requests from clients by providing the required functionalities, based on
the client type.

Both the server and clients have two layers: system and application layer. In any
client, the camera and tracking modules are placed in the system layer, as they are
shared by all applications. However, the application and user-interface modules reside
in the application layer, because different applications use different modules.
Reference implementations of modules placed in the application layer can be
obtained. However, application-layer modules must be developed and installed by the
developers.

4 Content-Description Language

In this architecture, each client must communicate with the server to display MR
information. The architecture proposed in this paper is based on the client-server
model; communication between client and server is through the HTTP protocol.
Information exchanged between clients and the server is roughly divided into two
groups: requests from clients and responses from the server.

The information exchanged between the server and the clients varies according to
the client type, as shown in Fig. 2. SKiT-XML serves as the content-description
language used in such communication. SKiT-XML is one instance of XML [17].

The most important point in this architecture concerns sharing identical content
among various clients or terminals. Note that elements such as 3D graphic models and
text annotations contained in the contents, are defined as virtual objects. The clients
have to display identical motion of virtual objects to the users even when the objects
change over time.

Two kinds of motion of virtual objects are to be considered: shape changes of an
object, and movement of an object within the environment. Note that it is impractical
to describe all object position and orientation parameters for each frame. Therefore,
we describe parameters of each object at a specified timing, assuming that each
client’s system time is synchronized with the server. We call the parameter list the
Sequence, and the sequence is used to represent object motions. In the sequence, the
states of objects between one parameter set and the next are obtained by linear
interpolation. The same method is used for animation description in scalable vector
graphics (SVG) [18].

 Scalable Architecture and Content Description Language 127

Light-Load Client

A waddling bird

Middle-Load Client

Heavy-Load Client
Contents Database

(Duplication)

Server
Contents Database

- Difference between Contents Databases

- Position
- Orientation

- 3D Graphic Models
- Motion of Models
- Text Annotation

- Rendered Image
- Text Annotation

A waddling bird

- Captured Image

Communication
Based on SKiT-XML

Fig. 2. Information exchanged between the server and the clients differs according to the client
type. The LLC sends a captured image to the server and receives a rendered image and text
annotations. The MLC sends its position and orientation and receives 3D graphics models,
motion of the models, and text annotations. The HLC synchronizes the content database with
the server.

All sequences of the virtual objects are stored in the server’s content database. The
application module changes the records in the content database according to the user’s
context, or while interacting with the user.

When we describe contents in the way shown above, the following data exchange
is required, depending on the client type.

• LLC sends a camera image to the server in order to detect its position and
orientation. The server renders the contents at that time, based on the
corresponding sequence, and sends the rendered image to the client.

• MLC sends its position and orientation to the server. The server returns a sequence
of virtual objects surrounding the client.

• HLC checks periodically for any changes in the server’s content database. The
server returns SQL statements used to change the contents in the database, to the
client.

5 Experimental Results

We examined the effectiveness of our architecture by installing the system on various
terminals. Table 1 shows specifications of clients and the server used in these
experiments.

128 F. Shibata et al.

Table 1. This table shows the hardware specifications of the clients and the server used in these
experiments

Hardware Type Resolution Graphics Chip Camera Network

Dell Precision 450 Server --- nVIDIA Quadro FX500 --- ---

NTTDoCoMo SH901iC LLC QVGA --- Built-in Packet Network

Sharp Zaurus SL-6000W LLC, MLC VGA --- CE-AG06 IEEE 802.11b

HP iPAQ h5550 MLC QVGA --- FlyCAM-CF1.3 IEEE 802.11b

Xybernaut MA-V MLC, HLC SVGA ATI RAGE Mobility-M CMS-V13 IEEE 802.11g

Sony VAIO Type U MLC, HLC SVGA Intel 855GM CMS-V13 IEEE 802.11g

Dell Precision M60 MLC, HLC SVGA nVIDIA Quadro FX Go1000 CMS-V13 IEEE 802.11g

5.1 Hidden Cable Viewer

An application called “Hidden Cable Viewer” was developed and installed on the
server and the clients. The application visualizes cables hidden beneath the panels of a
free-access floor, so that re-arrangement of such cables is possible.

The objective area consists of 4 × 6 panels, each 50 cm square. Beneath the panels
are power and LAN cables. The ARToolKit [19] is used as a tracking mechanism, and
12 cm square markers are respectively placed on each tile. The ARToolKit is used
only to ensure solid and stable positioning and we do not recommend using such
markers.

Fig. 3 shows an example application. LLCs and MLCs of multiple types offered
the expected performance.

Fig. 3. The left figure is a screenshot of SH901iC, which is implemented as an LLC. The right
figure is a screenshot of iPAQ h5550, which is implemented as an MLC.

When the shutter is pressed on an LLC, it sends the image taken by the camera to
the server. The server computes client’s position and generates MR information,
which is then returned to the client. The client, then, displays the returned MR image.
It takes approximately 15 seconds for the SH901iC mobile phone and 3 seconds for
SL-6000W PDA to display an MR image to the user from the moment the shutter is
pressed. Note that most of this time is spent in communication.

Since an MLC can detect position and orientation, it does not need to send an
image to the server. It sends only the required position and orientation information.
Similarly, the server can return only wiring information to the client. This reduces the
communication load, allowing a movie-like presentation. The user can change the

 Scalable Architecture and Content Description Language 129

direction of the PDA and can see MR images for that direction with only a small
delay.

5.2 Navigation System

Another application we used to examine our architecture is an MR-based navigation
system. In this system, a user follows a path to a goal by following a flapping virtual
bird. The system provides navigation at cross points, switching modes to show an
arrow indicating the direction to go.

Fig. 4 shows sample images of this application. A bird at the center of the screen
flies by changing position and orientation. This motion is described by the sequence
explained in Section 3. A Precision M60 is used as a client. Its screen shows images
from a USB CMOS camera with the superimposed virtual bird. This is an HLC, and
the system ran at approximately 20 fps (frames per second). ARToolKit provided
solid and stable position information.

Fig. 4. The left figure is a screenshot of a Precision M60, which is implemented as an HLC. A
fluttering bird guides the user to his/her destination. The right figure is a screenshot of VAIO
Type U, which is implemented as an MLC. A user heading and an annotated image of a room
are displayed.

5.3 Campus Guide System

We also tested our architecture by implementing the Campus Guide System. Fig. 5
shows examples. Since position and orientation detection by the ARToolKit cannot be
applied outdoors, we adopted a gyro-aided, dead-reckoning module (Gyro-DRM-III)
and an inertial-based 3-DOF sensor (InertiaCube3), to build the tracking module.
Since Gyro-DRM-III only detects positions within one foot, we obtained positions
between each step by linear interpolation of the detected positions. The tracking
module integrates the output of Gyro-DRM-III and InertiaCube3, which provides full
360-degree tracking in all axes. The error of Gyro-DRM-III is within 5 m for 100 m,
and is not accurate enough. However, it is possible to use it in applications such as in
outdoor guide system.

The system frame rate is nearly 25 fps. The frame rate is mainly dependent on the
performance of the USB camera. When a USB CCD camera is used (Buffalo BWC-
C35H01/SV), the frame rate is 28 fps. However, the USB CCD camera is slightly
unstable.

130 F. Shibata et al.

Fig. 5. These figures are screenshots of a Precision M60, which is implemented as an HLC.
Annotations are displayed in front of the corresponding buildings.

6 Conclusion

In this paper, we proposed a scalable architecture that can accommodate various types
of mobile devices to realize AR/MR functionality, and described the results of its
implementation in actual applications. These results show that the significance of our
scalable architecture will increase as mobile devices evolve.

Though it is out of the scope of our concept, one problem to be resolved is building
a stable tracking method for outdoor use. We used Gyro-DRM-III as a position
detection device, however, the results indicated that it did not have the required
accuracy. Many researchers are working on sensing devices for outdoor use. We
believe that our application- and sensor-independent architecture can play a great role
in outdoor use also when this research is expanded.

Acknowledgement

This research was partially supported by a Grant-in-Aid for Scientific Research (B),
of the Ministry of Education, Culture, Sports, Science and Technology, No.17200039,
2005. The authors would like to thank Dr. Ryuhei Tenmoku for fruitful discussions.

References

[1] Handheld Augmented Reality, Proc. of 4th IEEE and ACM Int. Symp. on Mixed and
Augmented Reality, pp.xix–xxi, 2005.

[2] J. Fruend, C. Geiger, M. Grafe, and B. Kleinjohann: The Augmented Reality Personal
Digital Assistant, Proc. of 2nd Int. Symp. on Mixed Reality, pp.145–146, 2001.

[3] D.Wagner and D.Schmalstieg: First Steps towards Handheld Augmented Reality, Proc.
of 7th IEEE Int. Symp. on Wearable Computers, pp.127–135, 2003.

[4] W. Pasman and C. Woodward: Implementation of an Augmented Reality System on a
PDA, Proc. of 2nd IEEE and ACM Int. Symp. on Mixed and Augmented Reality,
pp.276–277, 2003.

[5] M. Möhring, C. Lessig, and O. Bimber: Video See-through AR on Consumer Cell-
phones, Proc. of 3rd IEEE and ACM Int. Symp. on Mixed and Augmented Reality,
pp.252–253, 2004.

 Scalable Architecture and Content Description Language 131

[6] F. Shibata, A. Kimura, T. Hashimoto, K. Furuno, T. Hiraoka, and H. Tamura: Design and
Implementation of General Framework of Mixed Reality Systems Applicable to Various
Mobile and Wearable Platforms, Transactions of the Virtual Reality Society of Japan,
Vol.10, No.3, pp.323–332, 2005(in Japanese).

[7] B. MacIntyre and S. Feiner: Language-level Support for Exploratory Programming of
Distributed Virtual Environments, Proc. of 9th ACM Symp. on User Interface Software
and Technology, pp.83–94, 1996.

[8] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway: Exploring Mars:
Developing Indoor and Outdoor User Interfaces to a Mobile Augmented Reality System,
Computers and Graphics, Vol.23, No.6, pp.779–785, 1999.

[9] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riß, C. Sandor, and
M. Wagner: Design of a Component-based Augmented Reality Framework, Proc. of 2nd
IEEE and ACM Int. Symp. on Augmented Reality (ISAR ’01), pp.45–54, 2001.

[10] M. Miyamae, T. Terada, Y. Kishino, S. Nishio, and M. Tsukamoto: An Event-driven
Navigation Platform for Wearable Computing Environments, Proc. of 9th IEEE Int.
Symp. on Wearable Computers (ISWC 2005), pp.100–107, 2005.

[11] Studierstube Augmented Reality Project Homepage, http://studierstube.icg.tu-graz.ac.at/
[12] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnação, M. Gervautz,

and W. Purgathofer: The Studierstube Augmented Reality Project, PRESENCE -
Teleoperators and Virtual Environments, Vol.11, No.1, pp.33–54, 2002.

[13] D. Wagner and D. Schmalstieg: First Steps towards Handheld Augmented Reality,
Proc.of 7th Int. Symp. on Wearable Computers (ISWC 2003), pp.127–135, 2003.

[14] NTT DoCoMo, Let’s make i-mode contents: i-αppli, http://www.nttdocomo.co.jp/
english/p_s/i/make/java/index.html

[15] KDDI au, EZfactory, http://www.au.kddi.com/ezfactory/index.html (in Japanese)
[16] NTT DoCoMo, i-αppli Content Developer’s Guide for DoJa-3.0, 2003.
[17] Extensible Markup Language (XML) 1.0 (Third Edition), http://www.w3.org/TR/

REC-xml/
[18] Scalable Vector Graphics (SVG) 1.1 Specification, http://www.w3.org/TR/SVG11/
[19] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana: Virtual Object

Manipulation on a Table-top AR Environment, Proc. of Int. Symp. on Augmented
Reality, pp.111–119, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

